Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Theor Biol ; 595: 111913, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39243882

ABSTRACT

In this study, we examine the effects of connectivity on the total catch of a fishery consisting of two fishing sites when the fish population is a predator of a larger prey-predator system. To this end, we analyze a prey-predator fish community model in a two-site environment and compute catch at Maximum Sustainable Yield (MSY). We exhibit some emergence phenomenon: the total catch can be greater than the sum of the catch at two isolated sites due to connectivity. This result is obtained when the two sites are heterogeneous. We show that the increase in capture at MSY is maximal for a certain value of the carrying capacity of the second site, all other parameters remaining constant, including the carrying capacity of the first site. A stronger phenomenon can also be observed: even if none of the sites is viable for fishing, the entire system can be viable. We then study the effects of the heterogeneity of the sites and illustrate our results through simulations. It is shown that the excess yield at MSY can become very significant when the characteristics of the prey and predator in terms of potential growth are opposite at each site.

3.
Acta Biotheor ; 66(4): 315-331, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29700660

ABSTRACT

Computational drug repositioning has been proven as a promising and efficient strategy for discovering new uses from existing drugs. To achieve this goal, a number of computational methods have been proposed, which are based on different data sources of drugs and diseases. These methods approach the problem using either machine learning- or network-based models with an assumption that similar drugs can be used for similar diseases to identify new indications of drugs. Therefore, similarities between drugs and between diseases are usually used as inputs. In addition, known drug-disease associations are also needed for the methods as prior information. It should be noted that those associations are still not well established due to the fact that many of marketed drugs have been withdrawn and this could affect the outcome of the methods. In this study, we propose a novel method named RLSDR (Regularized Least Square for Drug Repositioning) to find new uses of drugs. More specifically, it relies on a semi-supervised learning model, Regularized Least Square, thus it does not require definition of non-drug-disease associations as previously proposed machine learning-based methods. In addition, the similarity between drugs measured by chemical structures of drug compounds and the similarity between diseases which share phenotypes can be represented in a form of either similarity network or similarity matrix as inputs of the method. Moreover, instead of using a gold-standard set of known drug-disease associations, we construct an artificial set of the associations based on known disease-gene and drug-target associations. Experiment results demonstrate that RLSDR achieves better prediction performance on the artificial set of drug-disease associations than that on the gold-standard ones in terms of area under the Receiver Operating Characteristic (ROC) curve (AUC). In addition, it outperforms two representative network-based methods irrespective of the prior information of drug-disease associations. Novel indications for a number of drugs are also identified and validated by evidences from a different data resource.


Subject(s)
Computational Biology/methods , Drug Repositioning , Pharmacology/methods , Supervised Machine Learning , Area Under Curve , Drug Therapy/methods , Humans , Models, Statistical , Pharmaceutical Preparations/chemistry , Pharmacy/methods , Reproducibility of Results , Software
4.
Waste Manag ; 59: 14-22, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27836518

ABSTRACT

The amount of municipal solid waste (MSW) has been increasing steadily over the last decade by reason of population rising and waste generation rate. In most of the urban areas, disposal sites are usually located outside of the urban areas due to the scarcity of land. There is no fixed route map for transportation. The current waste collection and transportation are already overloaded arising from the lack of facilities and insufficient resources. In this paper, a model for optimizing municipal solid waste collection will be proposed. Firstly, the optimized plan is developed in a static context, and then it is integrated into a dynamic context using multi-agent based modelling and simulation. A case study related to Hagiang City, Vietnam, is presented to show the efficiency of the proposed model. From the optimized results, it has been found that the cost of the MSW collection is reduced by 11.3%.


Subject(s)
Refuse Disposal/methods , Waste Management/methods , Algorithms , Cities , Computer Simulation , Geographic Information Systems , Models, Statistical , Paper , Refuse Disposal/economics , Solid Waste , Transportation , Vietnam , Waste Management/economics
5.
Acta Biotheor ; 64(4): 495-517, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27770315

ABSTRACT

We investigate a system of two species exploiting a common resource. We consider both abiotic (i.e. with a constant resource supply rate) and biotic (i.e. with resource reproduction and self-limitation) resources. We are interested in the asymmetric competition where a given consumer is the locally superior resource exploiter (LSE) and the other is the locally inferior resource exploiter (LIE). They also interact directly via interference competition in the sense that LIE individuals can use two opposite strategies to compete with LSE individuals: we assume, in the first case, that LIE uses an avoiding strategy, i.e. LIE individuals go to a non-competition patch to avoids competition with LSE individuals, and in the second one, LIE uses an aggressive strategy, i.e. being very aggressive so that LSE individuals have to go to a non-competition patch. We further assume that there is no resource in the non-competition patch so that individuals have to come back to the competition patch for their maintenance, and the migration process acts on a fast time scale in comparison with demography and competition processes. The models show that being aggressive is efficient for LIE's survival and even provoke global extinction of the LSE and this result does not depend on the nature of resource.


Subject(s)
Behavior, Animal/physiology , Cats/psychology , Competitive Behavior/physiology , Models, Theoretical , Population Dynamics , Animals , Cats/classification , Cats/physiology , Computer Simulation
6.
Acta Biotheor ; 64(4): 519-536, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27770316

ABSTRACT

We present a mathematical model of two competing marine species that are harvested. We consider three models according to different levels of complexity, without and with species refuge and density-independent and density-dependent species movement between fishing area and refuge. We particularly study the effects of the fishing pressure on the outcome of the competition. We focus on conditions that allow an inferior competitor to invade as a result of fishing pressure. The model is discussed in relationship to the case of the thiof and the octopus along the Atlantic West African coast. At the origin, the thiof was abundant and the octopus scarce in that region. Since, the fishing pressure has strongly increased in some fishing areas leading to the depletion of the thiof and the invasion of its competitor, the octopus.


Subject(s)
Competitive Behavior , Fisheries , Fishes/classification , Fishes/physiology , Models, Theoretical , Octopodiformes/physiology , Animals , Population Dynamics , Senegal
SELECTION OF CITATIONS
SEARCH DETAIL