Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
2.
J Med Chem ; 67(4): 2369-2378, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38335279

ABSTRACT

There remains a need to develop novel SARS-CoV-2 therapeutic options that improve upon existing therapies by an increased robustness of response, fewer safety liabilities, and global-ready accessibility. Functionally critical viral main protease (Mpro, 3CLpro) of SARS-CoV-2 is an attractive target due to its homology within the coronaviral family, and lack thereof toward human proteases. In this disclosure, we outline the advent of a novel SARS-CoV-2 3CLpro inhibitor, CMX990, bearing an unprecedented trifluoromethoxymethyl ketone warhead. Compared with the marketed drug nirmatrelvir (combination with ritonavir = Paxlovid), CMX990 has distinctly differentiated potency (∼5× more potent in primary cells) and human in vitro clearance (>4× better microsomal clearance and >10× better hepatocyte clearance), with good in vitro-to-in vivo correlation. Based on its compelling preclinical profile and projected once or twice a day dosing supporting unboosted oral therapy in humans, CMX990 advanced to a Phase 1 clinical trial as an oral drug candidate for SARS-CoV-2.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Cell Differentiation , Disclosure , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use , Antiviral Agents/pharmacology
3.
Acta Pharm Sin B ; 13(4): 1648-1659, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37139407

ABSTRACT

Peptides are increasingly important resources for biological and therapeutic development, however, their intrinsic susceptibility to proteolytic degradation represents a big hurdle. As a natural agonist for GLP-1R, glucagon-like peptide 1 (GLP-1) is of significant clinical interest for the treatment of type-2 diabetes mellitus, but its in vivo instability and short half-life have largely prevented its therapeutic application. Here, we describe the rational design of a series of α/sulfono-γ-AA peptide hybrid analogues of GLP-1 as the GLP-1R agonists. Certain GLP-1 hybrid analogues exhibited enhanced stability (t 1/2 > 14 days) compared to t 1/2 (<1 day) of GLP-1 in the blood plasma and in vivo. These newly developed peptide hybrids may be viable alternative of semaglutide for type-2 diabetes treatment. Additionally, our findings suggest that sulfono-γ-AA residues could be adopted to substitute canonical amino acids residues to improve the pharmacological activity of peptide-based drugs.

4.
ACS Chem Biol ; 17(5): 1249-1258, 2022 05 20.
Article in English | MEDLINE | ID: mdl-35417146

ABSTRACT

Recent clinical trials have revealed that the chimeric peptide hormones simultaneously activating glucagon-like peptide-1 receptor (GLP-1R) and glucose-dependent insulinotropic polypeptide receptor (GIPR) demonstrate superior efficacy in glycemic control and body weight reduction, better than those activating the GLP-1R alone. However, the linear peptide-based GLP-1R/GIPR dual agonists are susceptible to proteolytic cleavage by common digestive enzymes present in the gastrointestinal tract and thus not suitable for oral administration. Here, we report the design and synthesis of biaryl-stapled peptides, with and without fatty diacid attachment, that showed potent GLP-1R/GIPR dual agonist activities. Compared to a linear peptide dual agonist and semaglutide, the biaryl-stapled peptides displayed drastically improved proteolytic stability against the common digestive enzymes. Furthermore, two stapled peptides showed excellent efficacy in an oral glucose tolerance test in mice, owing to their potent receptor activity in vitro and good pharmacokinetics exposure upon subcutaneous injection. By exploring a more comprehensive set of biaryl staplers, we expect that this stapling method could facilitate the design of the stapled peptide-based dual agonists suitable for oral administration.


Subject(s)
Receptors, Gastrointestinal Hormone , Animals , Gastric Inhibitory Polypeptide , Glucagon-Like Peptide-1 Receptor/agonists , Mice , Peptides/pharmacology , Receptors, G-Protein-Coupled , Receptors, Gastrointestinal Hormone/agonists
5.
Molecules ; 25(11)2020 May 28.
Article in English | MEDLINE | ID: mdl-32481528

ABSTRACT

Owing to their pleiotropic metabolic benefits, glucagon-like peptide-1 receptor (GLP-1R) agonists have been successfully utilized for treating metabolic diseases, such as type 2 diabetes and obesity. As part of our efforts in developing long-acting peptide therapeutics, we have previously reported a peptide engineering strategy that combines peptide side chain stapling with covalent integration of a serum protein-binding motif in a single step. Herein, we have used this strategy to develop a second generation extendin-4 analog rigidified with a symmetrical staple, which exhibits an excellent in vivo efficacy in an animal model of diabetes and obesity. To simplify the scale-up manufacturing of the lead GLP-1R agonist, a semisynthesis protocol was successfully developed, which involves recombinant expression of the linear peptide followed by attachment of a polyethylene glycol (PEG)-fatty acid staple in a subsequent chemical reaction step.


Subject(s)
Exenatide/analogs & derivatives , Exenatide/metabolism , Glucagon-Like Peptide-1 Receptor/agonists , Glucagon-Like Peptide-1 Receptor/metabolism , Animals , Diabetes Mellitus, Type 2 , Exenatide/chemistry , Fatty Acids/chemistry , Male , Mice , Molecular Structure , Obesity , Peptides/chemistry , Peptides/metabolism , Polyethylene Glycols/chemistry
6.
Sci Adv ; 6(20): eaaz4988, 2020 05.
Article in English | MEDLINE | ID: mdl-32440547

ABSTRACT

Existing long α-helix mimicking necessitates the retention of most natural amino acid residues to maintain their biological activity. Here, we report the exploration of helical sulfono-γ-AApeptides with entire unnatural backbones for their ability to structurally and functionally mimic glucagon-like peptide 1 (GLP-1). Our findings suggest that efficient construction of novel GLP-1 receptor (GLP-1R) agonists could be achieved with nanomolar potencies. In addition, the resulting sulfono-γ-AApeptides were also proved to display remarkable stability against enzymatic degradation compared to GLP-1, augmenting their biological potential. This alternative strategy of α-helix mimicking, as a proof of concept, could provide a new paradigm to prepare GLP-1R agonists.


Subject(s)
Glucagon-Like Peptide 1 , Peptidomimetics , Peptides/chemistry , Peptidomimetics/chemistry , Protein Conformation, alpha-Helical
7.
Bioconjug Chem ; 31(4): 1167-1176, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32243137

ABSTRACT

Oxyntomodulin (OXM) is an intestinal peptide hormone that activates both glucagon-like peptide-1 (GLP-1) and glucagon (GCG) receptors. The natural peptide reduces body weight in obese subjects and exhibits direct acute glucoregulatory effects in patients with type II diabetes. However, the clinical utility of OXM is limited due to its lower in vitro potency and short in vivo half-life. To overcome these issues, we developed stapled, long-acting, and highly potent OXM analogs with balanced activities at both GLP-1 and GCG receptors. The lead molecule O14 exhibits potent and long-lasting effects on glucose control, body weight loss, and reduction of hepatic fat reduction in DIO mice. Importantly, O14 significantly reversed hepatic steatosis; reduced liver weight, total cholesterol, and hepatic triglycerides; and improved markers of liver function in a nonalcoholic steatohepatitis (NASH) mouse model. A symmetrical version of the peptide was also shown to be more efficacious and long-lasting in controlling glucose than semaglutide and the clinical candidate cotadutide in wild-type mice, highlighting the utility of our designs of the dual agonist as a potential new therapy for diabetes and liver diseases.


Subject(s)
Body Weight/drug effects , Non-alcoholic Fatty Liver Disease/drug therapy , Oxyntomodulin/pharmacology , Oxyntomodulin/pharmacokinetics , Animals , Blood Glucose/metabolism , Cholesterol/blood , Liver/drug effects , Liver/metabolism , Mice , Non-alcoholic Fatty Liver Disease/blood , Oxyntomodulin/therapeutic use , Triglycerides/metabolism
8.
Proc Natl Acad Sci U S A ; 113(41): 11501-11506, 2016 10 11.
Article in English | MEDLINE | ID: mdl-27663736

ABSTRACT

A variable region fusion strategy was used to generate an immunosuppressive antibody based on a novel "stalk-knob" structural motif in the ultralong complementary-determining region (CDR) of a bovine antibody. The potent Kv1.3 channel inhibitory peptides Moka1-toxin and Vm24-toxin were grafted into different CDRs of the humanized antibodies BVK and Synagis (Syn) using both ß-sheet and coiled-coil linkers. Structure-activity relationship efforts led to generation of the fusion protein Syn-Vm24-CDR3L, which demonstrated excellent selectivity and potency against effector human memory T cells (subnanomolar to picomolar EC50 values). This fusion antibody also had significantly improved plasma half-life and serum stability in rodents compared with the parent Vm24 peptide. Finally, this fusion protein showed potent in vivo efficacy in the delayed type hypersensitivity in rats. These results illustrate the utility of antibody CDR fusions as a general and effective strategy to generate long-acting functional antibodies, and may lead to a selective immunosuppressive antibody for the treatment of autoimmune diseases.


Subject(s)
Antibodies, Blocking/pharmacology , Drug Design , Immunosuppressive Agents/pharmacology , Kv1.3 Potassium Channel/antagonists & inhibitors , Amino Acid Sequence , Animals , CHO Cells , Cattle , Complementarity Determining Regions/chemistry , Cricetinae , Cricetulus , HEK293 Cells , Humans , Lymphocyte Activation/drug effects , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology
9.
J Med Chem ; 53(1): 77-105, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-19928766

ABSTRACT

The discovery, synthesis, and optimization of compound 1 from a high-throughput screening hit to highly potent and selective peroxisome proliferator-activated receptor delta (PPARdelta) agonists are reported. The synthesis and structure-activity relationship in this series are described in detail. On the basis of a general schematic PPAR pharmacophore model, scaffold 1 was divided into headgroup, linker, and tailgroup and successively optimized for PPAR activation using in vitro PPAR transactivation assays. A (2-methylphenoxy)acetic acid headgroup, a flexible linker, and a five-membered heteroaromatic center ring with two hydrophobic aryl substituents were required for efficient and selective PPARdelta activation. The fine-tuning of these aryl substituents led to an array of highly potent and selective compounds such as compound 38c, displaying an excellent pharmacokinetic profile in mouse. In an in vivo acute dosing model, selected members of this array were shown to induce the expression of pyruvate dehydrogenase kinase-4 (PDK4) and uncoupling protein-3 (UCP3), genes that are known to be involved in energy homeostasis and regulated by PPARdelta in skeletal muscle.


Subject(s)
Oxazoles/pharmacology , PPAR delta/agonists , Thiazoles/pharmacology , Animals , Drug Evaluation, Preclinical , Fluorescence Resonance Energy Transfer , High-Throughput Screening Assays , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Molecular Structure , Oxazoles/chemical synthesis , Oxazoles/chemistry , PPAR delta/genetics , Stereoisomerism , Structure-Activity Relationship , Thiazoles/chemical synthesis , Thiazoles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL