Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Microbiol ; 21(1): 5, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407120

ABSTRACT

BACKGROUND: During the last two decades research on animal filarial parasites, especially Onchocerca ochengi, infecting cattle in savanna areas of Africa revealed that O. ochengi as an animal model has biological features that are similar to those of O. volvulus, the aetiological agent of human onchocerciasis. There is, however, a paucity of biochemical, immunological and pathological data for O. ochengi. Galectins can be generated by parasites and their hosts. They are multifunctional molecules affecting the interaction between filarial parasites and their mammalian hosts including immune responses. This study characterized O. ochengi galectin, verified its immunologenicity and established its immune reactivity and that of Onchocerca volvulus galectin. RESULTS: The phylogenetic analysis showed the high degree of identity between the identified O. ochengi and the O. volvulus galectin-1 (ß-galactoside-binding protein-1) consisting only in one exchange of alanine for serine. O. ochengi galectin induced IgG antibodies during 28 days after immunization of Wistar rats. IgG from O. ochengi-infected cattle and O. volvulus-infected humans cross-reacted with the corresponding galectins. Under the applied experimental conditions in a cell proliferation test, O. ochengi galectin failed to significantly stimulate peripheral blood mononuclear cells (PBMCs) from O. ochengi-infected cattle, regardless of their parasite load. CONCLUSION: An O. ochengi galectin gene was identified and the recombinantly expressed protein was immunogenic. IgG from Onchocerca-infected humans and cattle showed similar cross-reaction with both respective galectins. The present findings reflect the phylogenetic relationship between the two parasites and endorse the appropriateness of the cattle O. ochengi model for O. volvulus infection research.


Subject(s)
Galectins/administration & dosage , Galectins/genetics , Immunoglobulin G/blood , Leukocytes, Mononuclear/immunology , Onchocerca/immunology , Animals , Cattle , Cloning, Molecular/methods , Female , Galectins/immunology , Gene Expression Profiling , Helminth Proteins/administration & dosage , Helminth Proteins/genetics , Helminth Proteins/immunology , Humans , Immunization , Leukocytes, Mononuclear/parasitology , Onchocerca/genetics , Phylogeny , Rats , Rats, Wistar , Recombinant Proteins/administration & dosage , Recombinant Proteins/immunology , Sequence Analysis, DNA
3.
Vet Parasitol Reg Stud Reports ; 21: 100412, 2020 07.
Article in English | MEDLINE | ID: mdl-32862899

ABSTRACT

Gastro-intestinal tracts were examined from thirteen Gudali zebu cattle, ten goats and ten sheep from the Adamawa highland in Northern Cameroon. A total of 28,325 adult helminths were recovered from the abomasa, small and large intestines. Five trichostrongylid genera were identified by their morphology: Haemonchus, Trichostrongylus and Oesophagostomum were predominant in both cattle and small ruminants, whilst Cooperia was only found in cattle both in the abomasum and small intestines. The molecular species identification and the inference of their phylogenetic relationships was based on the analysis of the hypervariable region I of the small subunit 18S rDNA (SSU) and the Second Internal Transcribed Spacer (ITS-2) of 408 adult trichostrongylid worms, which were PCR-amplified, sequenced, and compared with available database entries. Consistent with earlier findings, the SSU was invariable within the Haemonchus and Trichostrongylus genera, confirming the prior classification based on the morphology of the worms, but the ITS-2 was highly inter- and intraspecifically variable and thus allowed to distinguish individual species and to study the haplotype diversity within the different species. In cattle, we report for the first time in Cameroon co-infection with two species of Haemonchus (H. placei and H. similis), together with two species of Cooperia (C. punctata and C. pectinata) and one species of Trichostrongylus (T. axei). In goats and sheep, we found one highly polymorphic clade of Haemonchus contortus and two Trichostrongylus species (T. axei and T. colubriformis). When compared with other Trichostrongylidae from different regions of the world and wildlife, the analysis of haplotypes did not indicate any host and geographical isolation, but a very high haplotype diversity among H. contortus. These findings illustrate the complexity of trichostrongylid populations in domestic ruminants and suggest grazing overlap between domestic and wildlife hosts.


Subject(s)
Host Specificity , Host-Parasite Interactions , Phylogeny , Trichostrongyloidea/isolation & purification , Trichostrongyloidiasis/veterinary , Animals , Cameroon , Cattle , Cattle Diseases/parasitology , Female , Goat Diseases/parasitology , Goats , Grassland , Male , Sheep , Sheep Diseases/parasitology , Sheep, Domestic , Trichostrongyloidea/classification , Trichostrongyloidiasis/parasitology
SELECTION OF CITATIONS
SEARCH DETAIL
...