Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Radiol ; 170: 111240, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38043383

ABSTRACT

OBJECTIVES: To retrospectively evaluate the association between the presence of collateral vessels and grade of clear cell renal cell carcinoma (ccRCC) and whether the presence of collateral vessels could serve as a predictor to differentiate high- and low-grade ccRCC. MATERIALS AND METHODS: From May 2018 to September 2022, a total of 160 ccRCC patients with pathological diagnosis were enrolled in this study. Patients were divided into a high-grade group and a low-grade group according to World Health Organization/International Society of Urological Pathology (WHO/ISUP) grading system. The significant variables were extracted based on the univariate analyses using Student t test, Mann-Whitney U test, Chi-square test or Fisher's exact test. Multivariate logistic regression analyses were performed to determine independent factors among extracted variables. We calculated the sensitivity, specificity and their 95% confidence intervals (CI) of collateral vessels for predicting high WHO/ISUP grade to quantify its predictive performance. Furthermore, to investigate the additional predictive contribution of collateral vessels, a primary model and a control model were constructed to predict WHO/ISUP grade. The primary model included all extracted significant variables and the control model included significant variables except collateral vessels. RESULTS: The proportion of ccRCC patients with collateral vessels was significantly larger in high-grade ccRCC than those in low-grade ccRCC (87.5 % vs. 26.8 %, P < 0.001). Multivariate logistic regression analyses showed that the presence of collateral vessels was an independent predictor for high WHO/ISUP grade (P < 0.001). The sensitivity and specificity of the presence of collateral vessels for differentiating high- and low-grade ccRCC were 87.5 % (95 % CI 0.753-0.941) and 73.2 % (95 % CI 0.643-0.806) respectively. Including collateral vessels in predictive model improves predictive performance for WHO/ISUP grade, increasing the area under the curve (AUC) value from 0.889 to 0.914. CONCLUSION: The presence of collateral vessels has high sensitivity and specificity for differentiating high- and low-grade ccRCC and can improve the predictive performance for high WHO/ISUP grade.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/surgery , Retrospective Studies , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/surgery , Tomography, X-Ray Computed/methods , Sensitivity and Specificity , Neoplasm Grading
2.
iScience ; 26(8): 107392, 2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37554464

ABSTRACT

Numerosity perception is a fundamental cognitive function in humans and animals. Using an individual difference approach with a comprehensive dataset (N = 249), we performed a voxel-based morphometry analysis to unravel the neuroanatomical substrates associated with individual differences in numerosity perception sensitivity, measured by a classical non-symbolic numerical judgment task. Results showed that greater gray matter volume (GMV) in the left cerebellum, right temporal pole, and right parahippocampal was positively correlated to higher perceptual sensitivity to numerosity. In contrast, the GMV in the left intraparietal sulcus, and bilateral precentral/postcentral gyrus was negatively correlated to the sensitivity of numerosity perception. These findings indicate that a wide range of brain structures, rather than a specific anatomical structure or circuit, forms the neuroanatomical basis of numerosity perception, lending support to the emerging network view of the neural representation of numerosity. This work contributes to a more comprehensive understanding of how the brain processes numerical information.

3.
Sci Total Environ ; 743: 140754, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32758840

ABSTRACT

Harmful algal blooms (HABs) and thermal stress as climate changes become more common in global water ecosystem, especially under eutrophic habitats. Here our study examined the combined impacts of bloom forming cyanobacteria Microcystis aeruginosa and thermal stress on the antioxidant responses of the ecologically important species triangle sail mussel Hyriopsis cumingii. The differential responses of a series of enzymes, e.g. superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST), as well as signal metabolites including reactive oxygen species (ROS), malondialdehyde (MDA) and glutathione (GSH) involved in antioxidant defense mechanisms were analyzed during 14 d exposure to toxic cyanobacterium M. aeruginosa and 7 d depuration period. The activities of SOD and GPx as well as the content of ROS and MDA in H. cumingii increased, while CAT activity reduced due to M. aeruginosa exposure. Thermal stress resulted in decrease of CAT, the accumulation of GSH and the enhance of GST and SOD. Meanwhile, the interactive effects among M. aeruginosa, thermal stress and time were also observed on most parameters except for GST activity. The total amount of microcystins (MC) in sail mussels increased with concentrations of exposed M. aeruginosa, independently of the presence or absence of thermal stress. Although around 50% of MC in mussels dropped in the depuration period, most parameters showed alterations because of cyanobacteria exposure and thermal stress. Overall, these findings suggested that toxic cyanobacteria or thermal stress induces oxidative stress and severely affects the enzymes activities and intermediates level associated with antioxidant defense mechanisms in sail mussels respectively. More importantly, the toxic impacts on sail mussels could be intensified by their combination.


Subject(s)
Bivalvia , Microcystis , Unionidae , Animals , Antioxidants , Catalase , Ecosystem , Microcystins , Oxidative Stress , Superoxide Dismutase
4.
Oncol Lett ; 15(4): 5294-5300, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29552169

ABSTRACT

The present study aimed to assess early-stage nasopharyngeal carcinoma (NPC) with dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) at 3.0 T. A total of 44 patients newly diagnosed with NPC were included in the present study. All patients underwent MR examination at 3.0 T using DCE-MRI and DWI. The volume transfer constant (Ktrans ), flux rate constant between extravascular extracellular space and plasma (Kep ), the volume of extravascular extracellular space per unit volume of tissue (Ve ) and the apparent diffusion coefficient (ADC) of tumours were investigated. Furthermore, the correlation between clinical stages and ADC value and Ktrans were analysed. The diagnostic accuracy of Ktrans and ADC were estimated using receiver operating characteristic curves. NPC stage correlated positively with Ktrans and negatively with ADC values. Additionally, tumour Ktrans negatively correlated with ADC value. The sensitivity and accuracy of combined Ktrans and ADC in distinguishing between stage II and stage III and stage III and IV were higher than the values of either measurement used separately. The present study suggested that Ktrans and ADC derived from DCE-MRI and DWI may be useful to detect stage early NPC accurately. Ktrans and ADC in combination were superior than either alone.

SELECTION OF CITATIONS
SEARCH DETAIL