Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Cosmet Dermatol ; 23(1): 271-283, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37464738

ABSTRACT

BACKGROUND: Adipose stem cell-derived exosomes (ADSC-EXO) and botulinum toxin type A (BTX-A) individually showed a therapeutic effect on skin wound repair. AIMS: This study investigated their synergistic effect on promoting skin wound healing in vitro and in vivo and the underlying molecular events. METHODS: ADSCs were isolated from Sprague-Dawley (SD) rats to obtain ADSC-EXO by ultrafiltration and ultracentrifugation and were confirmed using nanoparticle tracking analysis and transmission electron microscopy. Human skin fibroblasts (HSF) were cultured and treated with or without ADSC-EXO, BTX-A, or their combination. Changes in cell phenotypes and protein expression were analyzed using different in vitro assays, and a rat skin wound model was used to assess their in vivo effects. RESULTS: The isolated ADSC-EXO from primarily cultured ADSCs had a circular vesicle shape with a 30-180 nm diameter. Treatment of HSF with ADSC-EXO and/or BTX-A significantly accelerated HSF migration in vitro and skin wound healing in a rat model. Moreover, ADSC-EXO plus BTX-A treatment dramatically induced VEGFA expression but reduced COL III and COL I levels in vivo. ADSC-EXO and/or BTX-A treatment significantly upregulated TGF-ß3 expression on Day 16 after surgery but downregulated TGF-ß1 expression, suggesting that ADSC-EXO plus BTX-A promoted skin wound healing and reduced inflammatory cell infiltration. CONCLUSIONS: The ADSC-EXO plus BTX-A treatment demonstrated a synergistic effect on skin wound healing through upregulation of VEGF expression and the TGF-ß3/TGF-ß1 and COL III/COL I ratio.


Subject(s)
Botulinum Toxins, Type A , Exosomes , Rats , Humans , Animals , Botulinum Toxins, Type A/pharmacology , Exosomes/metabolism , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta3/metabolism , Rats, Sprague-Dawley , Stem Cells , Adipose Tissue
2.
IBRO Neurosci Rep ; 15: 262-269, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37841087

ABSTRACT

Peripheral nerve injury is one of the more common forms of peripheral nerve disorders, and the most severe type of peripheral nerve injury is a defect with a gap. Biosynthetic cellulose membrane (BCM) is a commonly used material for repair and ligation of nerve defects with gaps. Meanwhile, exosomes from mesenchymal stem cells can promote cell growth and proliferation. We envision combining exosomes with BCMs to leverage the advantages of both to promote repair of peripheral nerve injury. Prepared exosomes were added to BCMs to form exosome-loaded BCMs (EXO-BCM) that were used for nerve repair in a rat model of sciatic nerve defects with gaps. We evaluated the repair activity using a pawprint experiment, measurement and statistical analyses of sciatica function index and thermal latency of paw withdrawal, and quantitation of the number and diameter of regenerated nerve fibers. Results indicated that EXO-BCM produced comprehensive and durable repair of peripheral nerve defects that were similar to those for autologous nerve transplantation, the gold standard for nerve defect repair. EXO-BCM is not predicted to cause donor site morbidity to the patient, in contrast to autologous nerve transplantation. Together these results indicate that an approach using EXO-BCM represents a promising alternative to autologous nerve transplantation, and could have broad applications for repair of nerve defects.

3.
Front Bioeng Biotechnol ; 10: 936951, 2022.
Article in English | MEDLINE | ID: mdl-35845399

ABSTRACT

Our general purpose was to provide a theoretical and practical foundation for the use of exosomes (EXOs) that have high levels of CD47 as stable and efficient drug carriers. Thus, we prepared EXOs from adipose tissue-derived mesenchymal stromal cells (ADMSCs) that had high levels of CD47 (EXOsCD47) and control EXOs (without CD47), and then compared their immune escape in vivo and their resistance to phagocytosis in vitro. Nanoflow cytometry was used to determine the CD47 level in these EXOs, and the amount of EXOsCD47 that remained in rat plasma at 3 h after intraperitoneal injection. Phagocytosis of the EXOs was also determined using in vitro rat macrophage bone marrow (RMA-BM) experiments. Our in vitro results showed that macrophages ingested significantly more control EXOs than EXOsCD47 (p < 0.01), with confirmation by ultra-high-definition laser confocal microscopy. Consistently, our in vivo results showed that rats had 1.377-fold better retention of EXOsCD47 than control EXOs (p < 0.01). These results confirmed that these engineered EXOsCD47 had improved immune escape. Our results therefore verified that EXOsCD47 had increased immune evasion relative to control EXOs, and have potential for use as drug carriers.

SELECTION OF CITATIONS
SEARCH DETAIL
...