Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters











Publication year range
1.
Environ Res ; 252(Pt 4): 119092, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729407

ABSTRACT

With the acceleration of industrialization, Cd pollution has emerged as a major threat to soil ecosystem health and food safety. Hyperaccumulating plants like Sedum alfredii Hance are considered to be used as part of an effective strategy for the ecological remediation of Cd polluted soils. This study delved deeply into the physiological, transcriptomic, and metabolomic responses of S. alfredii under cadmium (Cd) stress when treated with exogenous salicylic acid (SA). We found that SA notably enhanced the growth of S. alfredii and thereby increased absorption and accumulation of Cd, effectively alleviating the oxidative stress caused by Cd through upregulation of the antioxidant system. Transcriptomic and metabolomic data further unveiled the influence of SA on photosynthesis, antioxidant defensive mechanisms, and metal absorption enrichment pathways. Notably, the interactions between SA and other plant hormones, especially IAA and JA, played a central role in these processes. These findings offer us a comprehensive perspective on understanding how to enhance the growth and heavy metal absorption capabilities of hyperaccumulator plants by regulating plant hormones, providing invaluable strategies for future environmental remediation efforts.


Subject(s)
Cadmium , Salicylic Acid , Sedum , Soil Pollutants , Transcriptome , Cadmium/toxicity , Salicylic Acid/metabolism , Sedum/drug effects , Sedum/metabolism , Sedum/genetics , Sedum/growth & development , Soil Pollutants/toxicity , Soil Pollutants/metabolism , Transcriptome/drug effects , Metabolomics , Oxidative Stress/drug effects , Metabolome/drug effects
3.
Sci Total Environ ; 914: 169939, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38211868

ABSTRACT

Soil cadmium (Cd) pollution is escalating, necessitating effective remediation strategies. This study investigated the effects of exogenous jasmonic acid (JA) on Sedum alfredii Hance under Cd stress, aiming to enhance its phytoextraction efficiency. Initially, experiments were conducted to assess the impact of various concentrations of JA added to environments with Cd concentrations of 100, 300, and 500 µmol/L. The results determined that a concentration of 1 µmol/L JA was optimal. This concentration effectively mitigated the level of ROS products by enhancing the activity of antioxidant enzymes. Additionally, JA fostered Cd absorption and accumulation, while markedly improving plant biomass and photosynthetic performance. In further experiments, treatment with 1 µmol/L JA under 300 µmol/L Cd stress was performed and transcriptomic analysis unveiled a series of differentially expressed genes (DEGs) instrumental in the JA-mediated Cd stress response. These DEGs encompass not only pathways of JA biosynthesis and signaling but also genes encoding functions that influence antioxidant systems and photosynthesis, alongside genes pertinent to cell wall synthesis, and metal chelation and transport. This study highlights that JA treatment significantly enhances S. alfredii's Cd tolerance and accumulation, offering a promising strategy for plant remediation and deepening our understanding of plant responses to heavy metal stress.


Subject(s)
Cyclopentanes , Oxylipins , Sedum , Soil Pollutants , Cadmium/analysis , Sedum/metabolism , Antioxidants/metabolism , Gene Expression Profiling , Soil Pollutants/analysis , Biodegradation, Environmental , Plant Roots/metabolism
4.
J Agric Food Chem ; 71(41): 15097-15105, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37781984

ABSTRACT

The relationship between trimethylamine-N-oxide (TMAO), betaine, and choline with acute myocardial infarction (AMI) end point remains unclear. We analyzed plasma TMAO, betaine, and choline concentrations in AMI cases and non-AMI community-dwelling controls by LC-MS/MS to understand how the balance between these metabolites helps to reduce AMI risk. Results showed that the odds ratio (OR) for the highest versus lowest quartiles of betaine was 0.30 (95% CI, 0.10-0.82) after adjustment for AMI risk factors, and the unadjusted OR for quartile 3 versus quartile 1 of TMAO was 2.47 (95% CI, 1.02-6.17) (p < 0.05). The study populations with "high betaine + low TMAO" had a significant protective effect concerning AMI with a multivariable-adjusted OR of 0.20 (95% CI, 0.07-0.55) (p < 0.01). Multivariate linear regression showed that the chronological age was correlated with TMAO concentrations among AMI patients (95% CI, 0.05-3.24, p < 0.01) but not among the controls. This implies a further potential interplay between age and metabolite combination─AMI risk association.


Subject(s)
Betaine , Myocardial Infarction , Humans , Betaine/metabolism , Choline/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Methylamines/metabolism , Oxides
5.
Environ Pollut ; 327: 121559, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37023890

ABSTRACT

Biochar and metal-tolerant bacteria have been widely used in the remediation of heavy metal contaminated soil. However, the synergistic effect of biochar-functional microbes on phytoextraction by hyperaccumulators remains unclear. In this study, the heavy metal-tolerant strain Burkholderia contaminans ZCC was selected and loaded on biochar to produce biochar-resistant bacterial material (BM), and the effects of BM on Cd/Zn phytoextraction by Sedum alfredii Hance and rhizospheric microbial community were explored. The results showed that, BM application significantly enhanced the Cd and Zn accumulation of S. alfredii by 230.13% and 381.27%, respectively. Meanwhile, BM alleviated metal toxicity of S. alfredii by reducing oxidative damage and increasing chlorophyll and antioxidant enzyme activity. High-throughput sequencing revealed that BM significantly improved soil bacterial and fungal diversity, and increased the abundance of genera with plant growth promoting and metal solubilizing functions such as Gemmatimonas, Dyella and Pseudarthrobacter. Co-occurrence network analysis showed that BM significantly increased the complexity of the rhizospheric bacterial and fungal network. Structural equation model analysis revealed that soil chemistry property, enzyme activity and microbial diversity contributed directly or indirectly to Cd and Zn extraction by S. alfredii. Overall, our results suggested that biochar- B. contaminans ZCC was able to enhance the growth and Cd/Zn accumulation by S. alfredii. This study enhanced our understanding on the hyperaccumulator-biochar-functional microbe interactions, and provided a feasible strategy for promoting the phytoextraction efficiency of heavy metal contaminated soils.


Subject(s)
Metals, Heavy , Rhizosphere , Soil Pollutants , Bacteria , Biodegradation, Environmental , Cadmium/toxicity , Cadmium/analysis , Metals, Heavy/analysis , Microbiota , Sedum/microbiology , Soil/chemistry , Soil Pollutants/analysis , Zinc/analysis , Charcoal/chemistry
6.
Food Chem ; 393: 133452, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35751219

ABSTRACT

Glycinebetaine (GB) has long been used as a preservative for refrigerated fruits, but the effect of GB on the global metabolites of cold-stored strawberries is still unclear. In this study, the effects of exogenous application of GB on quality-related metabolites of cold-stored strawberries were investigated by nuclear magnetic resonance (NMR)-based metabolomic analysis. The results showed that the application of GB (especially at the concentration of 10 mM) on cold-stored strawberries effectively stabilized the sugars (d-xylose and d-glucose) and amino acids (tyrosine, leucine, and tryptophan) content, and lowered the acid (acetic acid) content as well. Additionally, the GB content in strawberries also increased. This implies that the appropriate concentration of GB is a natural and safe treatment, which could maintain the quality of cold-stored strawberries by regulating levels of quality-related metabolites, and the ingestion of GB-preserved strawberries may serve as a source of methyl-donor supplementation in our daily diet.


Subject(s)
Fragaria , Betaine/analysis , Fragaria/chemistry , Fruit/chemistry , Magnetic Resonance Spectroscopy , Metabolomics , Proton Magnetic Resonance Spectroscopy
7.
Environ Pollut ; 305: 119266, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35413404

ABSTRACT

Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%-148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1-21.4%, 29.1-42.7%,12.2-38.3% and 26.8-85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.


Subject(s)
Sedum , Soil Pollutants , Acetic Acid , Bacteria/metabolism , Biodegradation, Environmental , Cadmium/analysis , Methanol , Plant Roots/metabolism , Rhizosphere , Sedum/metabolism , Sedum/microbiology , Soil/chemistry , Soil Pollutants/analysis , Zinc/analysis
8.
J Environ Manage ; 305: 114374, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34953225

ABSTRACT

Organic farming is considered an efficient approach to improve soil fertility for sustainable agriculture. However, its soil micro-ecological effects and functions in intensive rice cropping systems are still obscure. Twelve soil samples were collected from a field experiment with four treatments such as M0 (no pig manure), M1 (1.6 t ha-1 pig manure), M2 (3.2 t ha-1 pig manure) and M3 (4.8 t ha-1 pig manure) after eight rice-oilseed rape rotation. Soil chemical property, enzyme activity and abundant/rare bacterial or fungal communities were analyzed to investigate the effect of conversion to organic farming with continuous pig manure application on soil microbiota. Stochastic processes controlled the assembly of abundant taxa, and deterministic processes dominated rare taxa. The composition and network construction of bacterial and fungal communities were significantly affected by pig manure, with changes in soil property and enzyme activity. Based on partial least squares path modeling (PLS-PM), pig manure application affected bacteria construction and enzyme activities by increasing soil carbon (C) and nitrogen (N). In summary, long-term pig manure application promotes specific microbial associations known to be involved in degrading complex organic compounds, and improving soil fertility such as soil enzyme activities. This research provides insight into understanding the processes behind changes in bacterial and fungal communities in paddy soil after conversion to organic farming.


Subject(s)
Microbiota , Oryza , Agriculture , Animals , Fertilizers/analysis , Manure , Nitrogen/analysis , Soil , Soil Microbiology , Swine
9.
Food Funct ; 12(19): 9476-9485, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34476427

ABSTRACT

With Zn deficiency increasing in the global population, functional plant food (including tea) can help to fill the nutrition gap that the main crops cannot meet. Glycinebetaine (GB), an important bioactive substance with a wide range of natural sources, has received limited attention towards its effects on Zn biofortification and the quality of tea. The Zn enrichment and metabolite responses of albino tea [cv. White leaf No. 1 (WL-1)] to the foliar application of GB, Zn, and their combination (Zn + GB) were investigated in a field experiment. The result indicated that the 100-buds weight, total N, Zn, Thea, and total amino acid content in the young leaves of WL-1 with Zn2 + GB2 treatment were significantly increased, whereas the Chla contents were decreased (p < 0.05). The total catechins and CAF contents of Zn2 + GB2 treatment were lower than those of other treatments, with significance (p < 0.05). Multivariate analysis and general quantitative analysis returned complementary results, revealing that Zn2 + GB2 treatment was better for the apparent and functional quality of WL-1. The more theanine and Zn, limited chlorophyll, catechin, and caffeine contributed to the quality improvement, as well as to maintaining the leaf albinistic characteristics, inhibiting astringency and bitterness, exerting flavor and umami, and improving the ultimate beneficial functions. The combined application of Zn and GB is a promising practice for Zn biofortification and for the quality improvement of tea, with spraying 750 L ha-1 of 2.0 g L-1 Zn fertilizer and 3.2 g L-1 GB mixture recommended.


Subject(s)
Betaine , Camellia sinensis/chemistry , Fertilizers , Zinc , Caffeine/analysis , Camellia sinensis/growth & development , Camellia sinensis/metabolism , Carotenoids/analysis , Catechin/analysis , Chlorophyll/analysis , Glutamates/analysis , Metabolomics , Nitrogen/analysis , Photosynthesis , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Leaves/metabolism , Tea/chemistry , Zinc/analysis
10.
Bioresour Technol ; 328: 124857, 2021 May.
Article in English | MEDLINE | ID: mdl-33631462

ABSTRACT

Global organic waste is increasing, bioconversion of organic waste arises because it can recover valuable nutrients and produce bioactive substances. Betaines are important bioactive substances in plants under environmental stress, but have received limited attention in vermicompost/larvae bioconversion compost. In this study, betaines in organic waste and vermicompost/larvae bioconversion compost were identified and quantified by HPLC-ESI-MS/MS. We observed the existence of glutamine betaine in all samples, which was first found in natural sources recently. Valine betaine was the highest among all detected betaines followed by GABA betaine, and both were rare in plants. The existence of tyrosine betaine in cow dung (CD) and vermicompost (CDV) was found, which was previously shown to be in fungi. Most importantly, we found larvae bioconversion could increase betaines by 5.56-99.75%, while vermicomposting decreased them. Bioconversion of larvae can effectively increase betaines in compost and can be used to produce potential novel functional organic fertilizers.


Subject(s)
Composting , Oligochaeta , Animals , Betaine , Cattle , Female , Soil , Tandem Mass Spectrometry
11.
J Agric Food Chem ; 69(4): 1242-1250, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33472359

ABSTRACT

White leaf No.1 (WL-1) is a low temperature-induced albino tea cultivar, which sticks out from tea plants with rich amino acids. Because harmonization of chloroplast ultrastructure integrity and lower chlorophyll contents during the albinism processes is much crucial for WL-1 production under extreme weather conditions, we carried out a field experiment to investigate the regulating effects of exogenous glycinebetaine (GB) on the chloroplast ultrastructure and quality constituents in young leaves of WL-1 at different albinism stages. The internal structure of chloroplasts degenerated at the albinistic stage, and chlorophyll contents were significantly lower than those at pre-albinistic and regreening stages. Spraying GB regulated etioplast-chloroplast transition, significantly increased epigallocatechin gallate, theanine, and caffeine contents, and lowered chlorophyll content in albinistic young leaves of WL-1, thus improving its quality in some aspects, maintaining special leaf color, exerting flavor and umami, and improving antioxidant and refreshing effects. Foliar application of GB is an efficient technical measure in practice.


Subject(s)
Betaine/pharmacology , Camellia sinensis/drug effects , Plant Leaves/chemistry , Camellia sinensis/chemistry , Camellia sinensis/genetics , Camellia sinensis/growth & development , Chlorophyll/metabolism , Cold Temperature , Color , Crop Production , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Leaves/growth & development , Tea/chemistry
12.
Planta ; 251(2): 36, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31903497

ABSTRACT

MAIN CONCLUSION: The molecular and physiological mechanisms of glycinebetaine stabilizing photosystem II complex under abiotic stresses are discussed, helping to address food shortage problems threatening the survival of growing population. In the backdrop of climate change, the frequency, dimensions and duration of extreme events have increased sharply, which may have unintended consequences for agricultural. The acclimation of plants to a constantly changing environment involves the accumulation of compatible solutes. Various compatible solutes enable plants to tolerate abiotic stresses, and glycinebetaine (GB) is one of the most-studied. The biosynthesis and accumulation of GB appear in numerous plant species, especially under environmental stresses. The exogenous application of GB and GB-accumulating transgenic plants have been proven to further promote plant development under stresses. Early research on GB focused on the maintenance of osmotic potential in plants. Subsequent experimental evidence demonstrated that it also protects proteins including the photosystem II complex (PSII) from denaturation and deactivation. As reviewed here, multiple experimental evidences have indicated considerable progress in the roles of GB in stabilizing PSII under abiotic stresses. Based on these advances, we've concluded two effects of GB on PSII: (1) it stabilizes the structure of PSII by protecting extrinsic proteins from dissociation or by promoting protein synthesize; (2) it enhances the oxygen-evolving activity of PSII or promotes the repair of the photosynthetic damage of PSII.


Subject(s)
Betaine/metabolism , Photosystem II Protein Complex/metabolism , Models, Biological , Plants, Genetically Modified/metabolism , Reactive Oxygen Species/metabolism , Stress, Physiological/physiology
13.
PLoS One ; 12(12): e0189908, 2017.
Article in English | MEDLINE | ID: mdl-29253000

ABSTRACT

To investigate the effects of different nutrient management regimes on the soil chemical, eco-enzymatic stoichiometric and microbial characteristics, soil samples were collected from a 30-year, long-term field experiment with six plots growing rice. The results showed that as integrated fertilization increased, so did the concentrations of soil total or available nutrients and microbial biomass carbon (MBC). Our results also found enhanced soil basal respiration and cumulative carbon mineralization compared to chemical fertilization alone at the same nutrient doses. The activities of soil protease (Pro), ß-glucosidase (ßG), N-acetyl-glucosaminidase (NAG) and acid phosphatase (AP) from the integrated fertilization treatments were significantly higher than those of the treatments without organic manure, so did the activities of soil leucyl aminopeptidase (LAP) and urease (Ure) from the treatment with organic manure in addition to farmer practise fertilization (NPKM2). The stoichiometric ratios, expressed as lnßG/ln(NAG+LAP)/lnPro/lnUre/lnAP, ranged from 1:0.94:1.04:0.67:1.01 to 1:0.98:1.10:0.78:1.25, indicating that the acquisition of C, N and P changed consistently and synchronously under different nutrient management strategies. Integrated fertilization was more beneficial to the acquisition and utilization of soil organic carbon compared to low-molecular-weight organic nitrogen. We concluded that protease and urease should be considered in eco-enzymatic stoichiometric assessments for the hydrolysis of proteins, amino acids, carbohydrates and phosphomonoesters in soil, and integrated fertilization with chemical fertilizers and organic manure should be recommended as a preferable nutrient management system for intensive rice cultivation.


Subject(s)
Agriculture/methods , Carbon/chemistry , Fertilizers , Soil Microbiology , Soil/chemistry , Acetylglucosaminidase/metabolism , Acid Phosphatase/metabolism , Aminopeptidases/metabolism , Biomass , China , Manure , Nitrogen/chemistry , Oryza , Phosphorus/chemistry , beta-Glucosidase/metabolism
14.
Int J Phytoremediation ; 19(12): 1093-1099, 2017 Dec 02.
Article in English | MEDLINE | ID: mdl-28678533

ABSTRACT

A method for screening copper (Cu)-tolerant rice cultivars was studied by combining hydroponic experiments and cluster analysis, and the classification of cultivars in Cu stress tolerance was done. In the first hydroponic experiment, seedlings of Jiahe991 and Xiushui114 were planted in nutrient solution with different Cu2+ concentrations from 10 to 1800 µg/L. Results indicated that the toxic threshold of Cu concentration in solution ranged from 900 to 1200 µg/L, since SPAD (Soil and Plant Analyzer Development, SPAD-502, a portable chlorophyll meter, Minolta Camera Co. Ltd., Japan) values of leaves and seedlings biomass of the treatments with ≥900 and/or 1200 µg/L were significantly lower than the control. The second experiment was conducted with 16 local rice cultivars under three Cu treatments (10, 1000, and 1500 µg/L). The 16 cultivars were well classified into tolerant, normal, and sensitive groups as a result of cluster analysis based on the relative SPAD (Soil and Plant Analyzer Development, SPAD-502, a portable chlorophyll meter, Minolta Camera Co. Ltd., Japan) value, shoot and root dry weights, root length and root dehydrogenase activity, and oxidizing capacity and shoot Cu concentration. Xiushui123, Xiushui134, Jiahe991, and Xianghu301 belonged to the tolerant group; Xiushui137 belonged to the sensitive group. The cluster analysis based on hydroponic experiments is an effective method for identifying rice cultivars that are tolerant to Cu stress. In addition, four cultivars (Xiushui123, Xiushui134, Jiahe991, and Xianghu301) are recommended in local practice.


Subject(s)
Copper , Hydroponics , Oryza , Biodegradation, Environmental , Biomass , Chlorophyll , Oryza/growth & development , Plant Leaves , Seedlings , Soil
15.
Environ Sci Pollut Res Int ; 24(16): 14234-14248, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28421524

ABSTRACT

The recovery of microbial community and activities is crucial to the remediation of contaminated soils. Distance-dependent variations of microbial community composition and metabolic characteristics in the rhizospheric soil of hyperaccumulator during phytoextraction are poorly understood. A 12-month phytoextraction experiment with Sedum alfredii in a Cd-contaminated soil was conducted. A pre-stratified rhizobox was used for separating sub-layer rhizospheric (0-2, 2-4, 4-6, 6-8, 8-10 mm from the root mat)/bulk soils. Soil microbial structure and function were analyzed by phospholipid fatty acid (PLFA) and MicroResp™ methods. The concentrations of total and specified PLFA biomarkers and the utilization rates for the 14 substrates (organic carbon) in the 0-2-mm sub-layer rhizospheric soil were significantly increased, as well as decreased with the increase in the distance from the root mat. Microbial structure measured by the ratios of different groups of PLFAs such as fungal/bacterial, monounsaturated/saturated, ratios of Gram-positive to Gram-negative (GP/GN) bacterial, and cyclopropyl/monoenoic precursors and 19:0 cyclo/18:1ω7c were significantly changed in the 0-2-mm soil. The PLFA contents and substrate utilization rates were negatively correlated with pH and total, acid-soluble, and reducible fractions of Cd, while positively correlated with labile carbon. The dynamics of microbial community were likely due to root exudates and Cd uptake by S. alfredii. This study revealed the stimulations and gradient changes of rhizosphere microbial community through phytoextraction, as reduced Cd concentration, pH, and increased labile carbons are due to the microbial community responses.


Subject(s)
Cadmium/toxicity , Rhizosphere , Sedum , Soil Pollutants/toxicity , Biodegradation, Environmental , Soil , Soil Microbiology
16.
Appl Microbiol Biotechnol ; 99(1): 477-87, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25172135

ABSTRACT

Nitrification inhibitors (NIs) 3,4-dimethylpyrazole phosphate (DMPP) and dicyandiamide (DCD) have been used extensively to improve nitrogen fertilizer utilization in farmland. However, their comparative effects on ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in agricultural soils are still unclear. Here, we compared the impacts of these two inhibitors on soil nitrification, AOA and AOB abundance as well as their community structure in a vegetable soil by using real-time PCR and terminal restriction fragment length polymorphism (T-RFLP). Our results showed that urea application significantly increased the net nitrification rates, but were significantly inhibited by both NIs, and the inhibitory effect of DMPP was significantly greater than that of DCD. AOB growth was more greatly inhibited by DMPP than by DCD, and the net nitrification rate was significantly related to AOB abundance, but not to AOA abundance. Application of urea and NIs to soil did not change the diversity of the AOA community, with the T-RFs remaining in proportions that were similar to control soils, while the community structure of AOB exhibited obvious shifts within all different treatments compared to the control. Phylogenetic analysis showed that all AOA sequences fell within group 1.1a and group 1.1b, and the AOB community consisted of Nitrosospira cluster 3, cluster 0, and unidentified species. These results suggest that DMPP exhibited a stronger inhibitory effect on nitrification than DCD by inhibiting AOB rather than AOA.


Subject(s)
Archaea/drug effects , Bacteria/drug effects , Biota/drug effects , Guanidines/metabolism , Pyrazoles/metabolism , Soil Microbiology , Archaea/growth & development , Bacteria/growth & development , Cluster Analysis , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Molecular Sequence Data , Nitrification/drug effects , Phylogeny , Polymorphism, Restriction Fragment Length , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA , Vegetables/growth & development
17.
Int J Phytoremediation ; 17(1-6): 85-92, 2015.
Article in English | MEDLINE | ID: mdl-25174428

ABSTRACT

A hydroponic experiment was conducted to investigate the effects of cadmium (Cd) on chlorophyll fluorescence and photosynthetic parameters on a Cd accumulating plant of Elsholtzia argyi. Four weeks-seedlings of E. argyi were treated with 0 (CK) 5, 10, 15, 20, 25, 30, 40, 50 and 100 µmol L(-1) Cd for 21 days. Fv/Fo, Fv/Fm, qP, ΦPSП, ETR and Fv'/Fm' were significantly increased under low Cd (5-15 µmol L(-1) for Fv/Fo, Fv/Fm and qP, 5-10 µmol L(-1) for ΦPSП, ETR and Fv'/Fm') stress, and these parameters were similar to control under Cd≤50 µmol L(-1). All above parameters were significantly decreased at 100 µmol L(-1) Cd. Compared with control, Pn was significantly (P<0.05) increased under 5-30 µmol L(-1) Cd. However, 50 and 100 µmol L(-1) Cd significantly (P < 0.05) reduced it. Gs and Tr were substantially decreased at 50-100 and 40-100 µmol L(-1) Cd, respectively. Ci was significantly increased at 50 and 100 µmol L(-1) Cd. High Cd-induced decrease of Pn is not only connected to stomatal limitation but also to the inhibition of Fv/Fo, Fv/Fm, ΦPSП, qP, ETR and increase of NPQ. Maintain chlorophyll fluorescence and photosynthesis parameters under its Cd tolerance threshold were one of tolerance mechanisms in E. argyi.


Subject(s)
Cadmium/metabolism , Chlorophyll/chemistry , Lamiaceae/metabolism , Photosynthesis , Chlorophyll/metabolism , Lamiaceae/chemistry , Plant Leaves/chemistry , Plant Leaves/metabolism
18.
Environ Sci Pollut Res Int ; 21(18): 10626-37, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24888623

ABSTRACT

Identification and classification of metal-accumulating plant species is essential for phytoextraction. Cluster analysis is used for classifying individuals based on measured characteristics. In this study, classification of plant species for metal accumulation was conducted using cluster analysis based on a practical survey. Forty plant samples belonging to 21 species were collected from an ancient silver-mining site. Five groups such as hyperaccumulator, potential hyperaccumulator, accumulator, potential accumulator, and normal accumulating plant were graded. For Cd accumulation, the ancient silver-mining ecotype of Sedum alfredii was treated as a Cd hyperaccumulator, and the others were normal Cd-accumulating plants. For Zn accumulation, S. alfredii was considered as a potential Zn hyperaccumulator, Conyza canadensis and Artemisia lavandulaefolia were Zn accumulators, and the others were normal Zn-accumulating plants. For Pb accumulation, S. alfredii and Elatostema lineolatum were potential Pb hyperaccumulators, Rubus hunanensis, Ajuga decumbens, and Erigeron annuus were Pb accumulators, C. canadensis and A. lavandulaefolia were potential Pb accumulators, and the others were normal Pb-accumulating plants. Plant species with the potential for phytoextraction were identified such as S. alfredii for Cd and Zn, C. canadensis and A. lavandulaefolia for Zn and Pb, and E. lineolatum, R. hunanensis, A. decumbens, and E. annuus for Pb. Cluster analysis is effective in the classification of plant species for metal accumulation and identification of potential species for phytoextraction.


Subject(s)
Metals/metabolism , Plants/classification , Plants/metabolism , Soil Pollutants/metabolism , Biodegradation, Environmental , Environmental Restoration and Remediation , Mining
19.
Int J Phytoremediation ; 16(7-12): 1257-67, 2014.
Article in English | MEDLINE | ID: mdl-24933916

ABSTRACT

In this study, a hydroponics experiment was conducted to investigate the characteristics of Cd tolerance and accumulation of Elsholtzia argyi natively growing on the soil with high levels of heavy metals in a Zn/Pb mining site. Seedlings of E. argyi grown for 4 weeks and then were treated with 0(CK), 5,10,15, 20, 25, 30, 40, 50,100 umM Cd for 21 days. Each treatment had three replications. No visual toxic symptoms on shoots of E. argyi were observed at Cd level < or = 50 muM. The results indicated that the dry biomass of each tissue and the whole plants of the treatments with < or =40 umM cadmium were similar to that of the control, implying that E. argyi was a cadmium tolerant plant. The results also showed that the shoot Cd concentration significantly (P < 0.05) increased with the increase in the Cd level in nutrient solution. The shoot Cd concentration of the treatment with 40 umM Cd was as high as 237.9 mg kg(-1), which was higher than 100 mg kg(-1), normally used as the threshold concentration for identifying the Cd hyperaccumulating plant. It could be concluded that E. argyi was a Cd tolerant and accumulating plant species.


Subject(s)
Cadmium/metabolism , Lamiaceae/physiology , Soil Pollutants/metabolism , Biodegradation, Environmental , Biomass , Cadmium/analysis , Hydroponics , Lamiaceae/growth & development , Lead/analysis , Mining , Plant Roots/growth & development , Plant Roots/physiology , Plant Shoots/growth & development , Plant Shoots/physiology , Soil/chemistry , Soil Pollutants/analysis , Stress, Physiological , Zinc/analysis
20.
Bioresour Technol ; 102(13): 6990-4, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21558054

ABSTRACT

The kinetics of water hyacinth decomposition using pyrolysis and hydrothermal treatment was compared. With pyrolysis, initial vaporization occurred at 453 K as determined by thermogravimetric analysis, while initial solubilisation occurred at 433 K with subcritical hydrothermal treatment. The "kinetic triplet" was determined for the ranges of 423-483 K (range I) and 473-553 K (range II) using the Coats-Redfern method for both treatments. The calculated activation energies for ranges I and II were 110 and 116 kJ/mol for conventional pyrolysis and 145 and 90 kJ/mol for hydrothermal treatment. The similar activation energies for the two temperature ranges observed for pyrolysis implied that only hemicellulose decomposition occurred. For hydrothermal treatment, both hemicellulose and cellulose decomposition occurred in temperature range II, in which a notable lower activation energy was observed. This implied hydrothermal treatment was more suitable for conversion lignocellulosic biomass under these conditions.


Subject(s)
Eichhornia/chemistry , Temperature , Water/chemistry , Hydrolysis , Kinetics , Models, Biological , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL