Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(5): e17350, 2024 May.
Article in English | MEDLINE | ID: mdl-38804101

ABSTRACT

With over one-third of terrestrial net primary productivity transferring to the litter layer annually, the carbon release from litter serves as a crucial valve in atmospheric carbon dioxide concentrations. However, few quantitative global projections of litter carbon release rate in response to climate change exist. Here, we combined a global foliar litter carbon release dataset (8973 samples) to generate spatially explicitly estimates of the response of their residence time (τ) to climate change. Results show a global mean litter carbon release rate ( k $$ k $$ ) of 0.69 year-1 (ranging from 0.09-5.6 year-1). Under future climate scenarios, global mean τ is projected to decrease by a mean of 2.7% (SSP 1-2.6) and 5.9% (SSP 5-8.5) during 2071-2100 period. Locally, the alleviation of temperature and moisture restrictions corresponded to obvious decreases in τ in cold and arid regions, respectively. In contract, τ in tropical humid broadleaf forests increased by 4.6% under SSP 5-8.5. Our findings highlight the vegetation type as a powerful proxy for explaining global patterns in foliar litter carbon release rates and the role of climate conditions in predicting responses of carbon release to climate change. Our observation-based estimates could refine carbon cycle parameterization, improving projections of carbon cycle-climate feedbacks.


Subject(s)
Carbon , Climate Change , Plant Leaves , Plant Leaves/metabolism , Carbon/metabolism , Carbon Cycle , Forests , Carbon Dioxide/metabolism , Carbon Dioxide/analysis , Global Warming , Trees/metabolism
2.
Ying Yong Sheng Tai Xue Bao ; 35(3): 631-638, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38646750

ABSTRACT

Litter input triggers the secretion of soil extracellular enzymes and facilitates the release of carbon (C), nitrogen (N), and phosphorus (P) from decomposing litter. However, how soil extracellular enzyme activities were controlled by litter input with various substrates is not fully understood. We examined the activities and stoichiometry of five enzymes including ß-1,4-glucosidase, ß-D-cellobiosidase, ß-1,4-N-acetyl-glucosaminidase, leucine aminopeptidase and acidic phosphatase (AP) with and without litter input in 10-year-old Castanopsis carlesii and Cunninghamia lanceolata plantations monthly during April to August, in October, and in December 2021 by using an in situ microcosm experiment. The results showed that: 1) There was no significant effect of short-term litter input on soil enzyme activity, stoichiometry, and vector properties in C. carlesii plantation. In contrast, short-term litter input significantly increased the AP activity by 1.7% in May and decreased the enzymatic C/N ratio by 3.8% in August, and decreased enzymatic C/P and N/P ratios by 11.7% and 10.3%, respectively, in October in C. lanceolata plantation. Meanwhile, litter input increased the soil enzymatic vector angle to 53.8° in October in C. lanceolata plantations, suggesting a significant P limitation for soil microorganisms. 2) Results from partial least squares regression analyses showed that soil dissolved organic matter and microbial biomass C and N were the primary factors in explaining the responses of soil enzymatic activity to short-term litter input in both plantations. Overall, input of low-quality (high C/N) litter stimulates the secretion of soil extracellular enzymes and accelerates litter decomposition. There is a P limitation for soil microorganisms in the study area.


Subject(s)
Carbon , Cunninghamia , Fagaceae , Nitrogen , Phosphorus , Soil Microbiology , Soil , Soil/chemistry , Cunninghamia/growth & development , Cunninghamia/metabolism , Carbon/metabolism , Carbon/analysis , Nitrogen/metabolism , Nitrogen/analysis , Phosphorus/metabolism , Phosphorus/analysis , Fagaceae/growth & development , Fagaceae/metabolism , Leucyl Aminopeptidase/metabolism , Cellulose 1,4-beta-Cellobiosidase/metabolism , Ecosystem , Plant Leaves/metabolism , Plant Leaves/chemistry , Acetylglucosaminidase/metabolism , Acid Phosphatase/metabolism , beta-Glucosidase/metabolism , China
3.
Glob Chang Biol ; 30(1): e17110, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273584

ABSTRACT

There may be trade-offs in the allocation patterns of recent photosynthetic carbon (RPC) allocation in response to environmental changes, with a greater proportion of RPC being directed towards compartments experiencing limited resource availability. Alternatively, the allocation of RPC could shift from sources to sinks as plants processing excess photosynthates. It prompts the question: Does the pattern of RPC allocation vary under global changes? If so, is this variation driven by optimal or by residual C allocation strategies? We conducted a meta-analysis by complicating 273 pairwise observations from 55 articles with 13 C or 14 C pulse or continuous labeling to assess the partitioning of RPC in biomass (leaf, stem, shoot, and root), soil pools (soil organic C, rhizosphere, and microbial biomass C) and CO2 fluxes under elevated CO2 (eCO2 ), warming, drought and nitrogen (N) addition. We propose that the increased allocation of RPC to belowground under sufficient CO2 results from the excretion of excess photosynthates. Warming led to a significant reduction in the percentage of RPC allocated to shoots, alongside an increase in roots allocation, although this was not statistically significant. This pattern is due to the reduced water availability resulting from warming. In conditions of drought, there was a notable increase in the partitioning of RPC to stems (+7.25%) and roots (+36.38%), indicative of a greater investment of RPC in roots for accessing water from deeper soil. Additionally, N addition led to a heightened allocation of RPC in leaves (+10.18%) and shoots (+5.78%), while reducing its partitioning in soil organic C (-8.92%). Contrary to the residual C partitioning observed under eCO2 , the alterations in RPC partitioning in response to warming, drought, and N supplementation are more comprehensively explained through the lens of optimal partitioning theory, showing a trade-off in the partitioning of RPC under global change.


Subject(s)
Carbon Dioxide , Carbon , Biomass , Soil , Water
4.
J Hazard Mater ; 460: 132455, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37677973

ABSTRACT

Water bodies are important carriers for lead (Pb) biogeochemical cycling, which is a key pathway of Pb transport. Although existing studies on Pb loading in inland waters have developed rapidly, a quantitative assessment of the distribution patterns and drivers of Pb concentration in inland waters at the global scale remains unclear. Here, by analyzing 1790 observations collected from 386 independent publications, we assessed the spatial distribution and drivers of Pb concentration in inland waters worldwide. We found that (1) globally, the median of Pb concentration in inland waters was 5.81 µg L-1; (2) among different inland water types, Pb concentration was higher in rivers, and the highest Pb concentration was in industrial land in terms of land use type; (3) Pb concentration in inland waters were positively driven by potential evapotranspiration, elevation and road density; and (4) Pb concentration showed a negative relationship with absolute latitude, decreasing from tropic to boreal regions. Overall, our global assessment of the patterns and drivers of Pb concentration in inland waters contributed to a better understanding of the natural and anthropogenic attributions of Pb in the inland hydrological cycling.

5.
J Environ Manage ; 347: 119148, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37776790

ABSTRACT

Vegetation restoration is vital for soil ecological restoration in post-mining areas, but a global-scale quantitative assessment of its effects on soil metal elements is lacking. Here, we conducted a meta-analysis with 2308 paired observations collected from 137 publications to evaluate vegetation restoration effects on the concentrations of 17 metal elements, namely K, AK (available K), Ca, Na, Mg, Fe, Mn, Zn, Cu, Al, Cr, Co, Ni, Cd, Sb, Hg, and Pb in post-mining soils. We found that (1) vegetation restoration significantly increased the concentrations of K, AK, Ca, Mg and Co by 43.2, 42.5, 53.4, 53.7, and 137.2%, respectively, but did not affect the concentrations of Na, Fe, Mn, Zn, Cu, Al, Cr, Ni, Cd, Sb, Hg, and Pb; (2) the effects of vegetation restoration on soil metal concentration were seldom impacted by vegetation type, while soil depth only affected the responses of AK, Cd, and Pb concentrations to vegetation restoration, and leaf type only impacted the responses of Ca and Ni concentrations to vegetation restoration; (3) latitude, elevation, restoration year, climate, and initial soil properties were also important moderator variables of vegetation restoration effects, but their impacts varied among different metals. Overall, our results clearly showed that vegetation restoration in posting-mining areas generally have a positive effect on the concentrations of nutrient elements but did not influence that of toxic elements, which provides useful information for the restoration and reconstruction of soil ecosystem in post-mining areas.


Subject(s)
Mercury , Metals, Heavy , Soil Pollutants , Soil , Metals, Heavy/analysis , Ecosystem , Cadmium , Lead , Environmental Monitoring/methods , Mercury/analysis , Soil Pollutants/analysis , Risk Assessment , China
6.
Environ Sci Pollut Res Int ; 30(33): 80807-80816, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37306875

ABSTRACT

Anthropogenic development has released large amounts of microplastics (MPs), which are carriers of migratory heavy metals, into the environment, and heavy metal adsorption by MPs may have strong combined toxic effects on ecosystems. However, until now, a comprehensive understanding of the factors influencing these adsorption capacities of MPs has been lacking. Thus, we used 4984 experimental data points to systematically assess the factors influencing the adsorption strength of 8 types of MPs on 13 types of heavy metals. We found that (1) the types of MPs, heavy metals, and adsorption environments significantly impacted the heavy metal adsorption capacities of MPs; (2) polyvinyl alcohol (PVA) showed a higher adsorption capacity for lead (Pb) and cadmium (Cd) than did other MPs, by 2810.62 mg/kg and 2732.84 mg/kg, respectively; (3) the adsorption capacities of MPs for heavy metal were regulated by multiple variables, with heavy metal concentration, MP quality, solution amount, adsorption time, and pH being the most important; and (4) MPs had a higher adsorption capacity in aquatic environments (except for seawater) than which in soil environments. Overall, our study clearly showed that the types of heavy metals, adsorption environments, and MPs influenced the heavy metal adsorption capacities of MPs and may exacerbate their combined environmental toxicity, which would help better characterize the severity of MP pollution.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Microplastics/chemistry , Plastics/chemistry , Adsorption , Ecosystem , Water Pollutants, Chemical/analysis , Metals, Heavy/chemistry
7.
Ying Yong Sheng Tai Xue Bao ; 33(11): 2936-2942, 2022 Oct.
Article in Chinese | MEDLINE | ID: mdl-36384827

ABSTRACT

Forest headwater streams are the monumental cement for relating habitats of the terrene and water. Nutri-ent dynamics of non-woody debris in stream can directly and indirectly regulate the cycle and transport of forest nutrients, for example, Ca and Mg. In the rainy season (from March to August) of 2021, we monitored the dyna-mics of Ca and Mg storage of non-woody debris in a typical headwater stream in a subtropical forest. The results showed that total Ca and Mg storage of non-woody debris per unit area of stream ranged from 178.1 to 890.5 mg·m-2 and 13.8 to 61.6 mg·m-2 during the rainy season, respectively. The Ca and Mg storages of non-woody debris per unit area of stream during the rainy season displayed a pattern of first increase and then decrease, and overall a decrease pattern. The storage varied significantly among different sites, with higher values in stream source than others. The total Ca and Mg storage of non-woody debris positively correlated with precipitation, but negatively with stream water alkalinity, temperature, and dissolved oxygen. The variation of riparian forest type (e.g., Castano-psis carlesii forests or mixed coniferous forests) and with or without tributaries did not affect the storage of Ca and Mg in stream non-woody debris. During the rainy season, total Ca and Mg storage of non-woody debris in the headwater stream from forest generally decreased over time, which was mainly controlled by the characteristics of rainfall and stream.


Subject(s)
Rivers , Trees , Seasons , Conservation of Natural Resources/methods , Forests , Water
8.
Front Plant Sci ; 13: 926941, 2022.
Article in English | MEDLINE | ID: mdl-35937380

ABSTRACT

Lignocellulose is a major component of plant litter and plays a dominant role in regulating the process of litter decomposition, but we lack a global perspective on plant litter initial lignocellulose concentration. Here, we quantitatively assessed the global patterns and drivers of litter initial concentrations of lignin, cellulose, and hemicellulose using a dataset consisting of 6,021 observations collected from 795 independent publications. We found that (1) globally, the median concentrations of leaf litter lignin, cellulose, and hemicellulose were 20.3, 22.4, and 15.0% of litter mass, respectively; and (2) litter initial concentrations of lignin, cellulose, and hemicellulose were regulated by phylogeny, plant functional type, climate, and soil properties, with mycorrhizal association and lifeform the dominant predictors. These results clearly highlighted the importance of mycorrhizal association and lifeform in controlling litter initial lignocellulose concentration at the global scale, which will help us to better understand and predict the role of lignocellulose in global litter decomposition models.

9.
Ying Yong Sheng Tai Xue Bao ; 33(8): 2121-2128, 2022 Aug.
Article in Chinese | MEDLINE | ID: mdl-36043818

ABSTRACT

To assess the dynamics and spectral characteristics of dissolved organic matter of twig litter in continuous increase stage, peak stage, and continuous decrease stage of twig litter production in different types of Castanopsis carlesii forest in middle subtropical China, a field experiment was conducted in C. carlesii natural forest, secondary forest and plantation. The results showed that litter production stage and forest type significantly affected the content and spectral characteristics of dissolved organic matter of twig litter were . Compared with the secondary forest and plantation, natural forest had higher dissolved organic carbon (DOC) content and lower special ultraviolet-visible absorption values at 254, 260 and 280 nm (SUVA254, SUVA260, SUVA280) at the continuous decrease stage of twig litter production, indicating high twig litter quality of natural forest and high cycling efficiency with dissolved organic matter in the natural forest at this stage. In contrast, the higher contents of total nitrogen (TN), total phosphorus (TP), total dissolved nitrogen (TDN), total dissolved phosphorus (TDP), and lower DOC:TDP and TDN:TDP ratios of twig litter in the plantation were observed at the peak stage of twig litter production, while no differences were detected in dissolved organic matter contents and spectral values in the secondary forest among the stages. In addition, the DOC, TDN, TDP of twig litter were negatively correlated with temperature and precipitation in the natural forests and secondary forests, but TDN and TDP of twig litter were positively correlated with temperature and precipitation in the plantations. These results suggested that the higher nutrient content at the peak stage of twig litter production in the C. carlesii plantation might lead to more efficient material cycling and that there would be a higher efficiency of material cycling for twig litter dissolved organic matter in C. carlesii natural forest at reduction stage of twig litter production.


Subject(s)
Dissolved Organic Matter , Fagaceae , Carbon/analysis , China , DNA-Binding Proteins , Forests , Nitrogen/analysis , Phosphorus , Soil
10.
Biol Rev Camb Philos Soc ; 97(6): 2023-2038, 2022 12.
Article in English | MEDLINE | ID: mdl-35811333

ABSTRACT

Plant litter is the major source of energy and nutrients in stream ecosystems and its decomposition is vital for ecosystem nutrient cycling and functioning. Invertebrates are key contributors to instream litter decomposition, yet quantification of their effects and drivers at the global scale remains lacking. Here, we systematically synthesized data comprising 2707 observations from 141 studies of stream litter decomposition to assess the contribution and drivers of invertebrates to the decomposition process across the globe. We found that (1) the presence of invertebrates enhanced instream litter decomposition globally by an average of 74%; (2) initial litter quality and stream water physicochemical properties were equal drivers of invertebrate effects on litter decomposition, while invertebrate effects on litter decomposition were not affected by climatic region, mesh size of coarse-mesh bags or mycorrhizal association of plants providing leaf litter; and (3) the contribution of invertebrates to litter decomposition was greatest during the early stages of litter mass loss (0-20%). Our results, besides quantitatively synthesizing the global pattern of invertebrate contribution to instream litter decomposition, highlight the most significant effects of invertebrates on litter decomposition at early rather than middle or late decomposition stages, providing support for the inclusion of invertebrates in global dynamic models of litter decomposition in streams to explore mechanisms and impacts of terrestrial, aquatic, and atmospheric carbon fluxes.


Subject(s)
Ecosystem , Rivers , Animals , Biodegradation, Environmental , Invertebrates , Plant Leaves , Plants
11.
Sci Total Environ ; 830: 154702, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35339550

ABSTRACT

Ash is a fundamental component of plant litter and plays a vital role in regulating litter decomposition. However, to date, global patterns and underlying mechanisms of initial litter ash concentrations remain unclear. Here, we used 570 observations collected from 104 independent publications to assess the global patterns of initial plant litter ash concentrations and evaluated the effects of mycorrhizal association [arbuscular mycorrhiza (AM) vs. ectomycorrhiza (ECM)], taxon group (gymnosperm vs. angiosperm), life form (tree vs. shrub vs. herb), leaf type (broadleaf vs. needle), and environmental factors such as climate and soil properties on initial litter ash concentration. The results showed that (1) global average ash concentrations varied significantly among different plant tissues and were 7.3, 4.5, 3.7, 3.5, 3.1, 2.4, and 1.5% in leaf, root, bark, reproductive tissue (flower and fruit), branch, stem, and wood litter, respectively; (2) in leaf litter, the initial ash concentrations of AM plants and species associated with both AM and ECM fungi were higher than those of ECM plants, and those of the tree species were lower than those of the herbs and shrubs; in root litter, the initial ash concentrations of the AM plants were lower than those of the species associated with both AM and ECM fungi but higher than those of the ECM plants; in both leaf and root litter, the initial ash concentrations of the angiosperms and broadleaf trees were higher than those of the gymnosperms and needle trees, respectively, while the effect of plant traits on branch litter was not obvious; and (3) the initial ash concentration of leaf litter was predominantly driven by mycorrhizal association and taxon group, while that of root litter tended to be driven by mycorrhizal association well as soil organic carbon. Our study clearly assessed the global patterns and underlying mechanisms of initial plant litter ash concentrations, which could help in better understanding the role of ash in litter decomposition and the related processes of carbon and nutrient cycling.


Subject(s)
Magnoliopsida , Mycorrhizae , Carbon , Forests , Mycorrhizae/physiology , Nitrogen , Plant Leaves/microbiology , Plant Roots , Soil , Trees
12.
Fundam Res ; 2(6): 954-963, 2022 Nov.
Article in English | MEDLINE | ID: mdl-38933376

ABSTRACT

Root and foliar litter inputs are the primary sources of carbon and nutrients for soil fauna and microorganisms, yet we still lack a quantitative assessment to evaluate the effects of root and foliar litter on various groups of soil organisms across terrestrial ecosystems. Here, we compiled 978 paired observations from 68 experimental sites to assess the directions and magnitudes of adding and removing foliar and root litter on the soil faunal density and microbial biomass that was evaluated by phospholipid fatty acids (PLFAs) across forests and grasslands worldwide. We found that litter addition had only a marginal effect on soil faunal density but significantly increased the soil total microbial-, fungal- and bacterial-PLFAs by 13%, 14%, and 10%, respectively, across ecosystems, suggesting that the soil microbial community is more sensitive to carbon source addition than soil fauna, particularly in soils with low carbon to nitrogen ratios. In contrast, removing litter significantly decreased the soil faunal density by 17% but had few effects on soil microorganisms. Compared with foliar litter, root litter input had a more positive effect on the development of soil fungal taxa. The effect of both litter addition and removal on soil faunal density and microbial biomass did not differ between humid and arid regions, but a greater influence was observed in grasslands than in forests for soil microbial community. Our results highlight that the increasing litter production under a global greening scenario would stimulate microbial activity in grasslands more than in forests, and this stimulation would be greater for soil microbes than soil fauna.

13.
Glob Chang Biol ; 27(14): 3350-3357, 2021 07.
Article in English | MEDLINE | ID: mdl-33864334

ABSTRACT

Spatiotemporal redistribution of incident rainfall in vegetated ecosystems results from the partitioning by plants into intercepted, stemflow, and throughfall fractions. However, variation in patterns and drivers of rainfall partitioning across global biomes remains poorly understood, which limited the ability of climate models to improve the predictions of biome hydrological cycle under global climate change scenario. Here, we synthesized and analyzed the partitioning of incident rainfall into interception, stemflow, and throughfall by trees and shrubs at the global scale using 2430 observations from 236 independent publications. We found that (1) globally, median levels of relative interception, stemflow, and throughfall accounted for 21.8%, 3.2%, and 73.0% of total incident rainfall, respectively; (2) rainfall partitioning varied among different biomes, due to variation in plant composition, canopy structure, and macroclimate; (3) relative stemflow tended to be driven by plant traits, such as crown height:width ratio, basal area, and height, while relative interception and throughfall tended to be driven by plant traits as well as meteorological variables. Our global assessment of patterns and drivers of rainfall partitioning underpins the role of meteorological factors and plant traits in biome-specific ecohydrological cycles. We suggest to include these factors in climate models to improve the predictions of local hydrological cycles and associated biodiversity and function responses to changing climate conditions.


Subject(s)
Rain , Trees , Ecosystem , Water Cycle
14.
Environ Microbiol Rep ; 13(3): 384-393, 2021 06.
Article in English | MEDLINE | ID: mdl-33870613

ABSTRACT

Dsk2 is a nuclear-enriched ubiquitin-like polyubiquitin-binding protein that regulates protein degradation in yeast but has not been explored yet in filamentous fungi, such as Beauveria bassiana. Here, we report Beauveria bassiana Dsk2 located both in the nucleus and in cytoplasm of hyphal cells. Deletion of Dsk2 resulted in mild growth defect on scant media with various carbon/nitrogen sources and dramatic attenuation in conidiation capability at optimal condition. Compared to the wild-type, ΔDsk2 strains are much more sensitive to high osmotic and oxidative pressure during vegetative growth. Meanwhile, the mutant strains showed an increased chemical tolerance to Congo red and calcofluor white, two cell wall perturbing agents. The transcriptional changes of genes involved in central development, superoxide dismutase and chitin synthesis pathway indicate that Dsk2 acts as a multi-functional regulator in adapting to environmental changes. Importantly, Dsk2 negatively regulated the ability of thermal resistance in B. bassiana, which makes it a potential target gene for constructing engineering anti-thermal strains in the circumstance of global warming. Altogether, our finding highlights novel roles of Dsk2 involved in the asexual cycle, multi-stress tolerance and pest control potential of B. bassiana.


Subject(s)
Beauveria , Beauveria/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Spores, Fungal/genetics , Stress, Physiological/genetics , Virulence/genetics
15.
Ying Yong Sheng Tai Xue Bao ; 32(4): 1154-1162, 2021 Apr.
Article in Chinese | MEDLINE | ID: mdl-33899383

ABSTRACT

To understand the nutrient use strategies of 11 tree species in a subtropical common-garden, we measured the specific leaf area, nitrogen (N) and phosphorus (P) resorption and stoichiometric characteristics of leaves in August 2019. The results showed that the specific leaf area, N and P concentrations in mature and senescent leaves of evergreen broadleaved (Lindera communis, Cinnamomum camphora, Schima superba, Castanopsis carlesii, Michelia macclurei and Elaeocarpus decipiens) and coniferous species (Cunninghamia lanceolata and Pinus massoniana) were lower than those of deciduous broadleaved species (Liquidambar formosana, Sapindus mukorossi and Liriodendron chinense). In contrast, C:N and C:P in mature leaves of evergreen broadleaved and coniferous species were significantly higher than those of deciduous broadleaved species. Except for C. carlesii, the N:P of all the species were lower than 14. Compared with other tree species, N and P resorption efficiencies of S. mukorossi were higher than 50% based on both mass and leaf area. Although P resorption efficiency of P. massoniana, C. lanceolata and C. camphora were higher than 50%, N and P resorption efficiency of M. macclurei were the lowest with only 15%-30%. In addition, specific leaf area of mature leaves was significantly positively correlated with N and P concentrations, but negatively correlated with C:N and C:P. In the common-garden, evergreen broadleaved species such as C. carlesii and L. communis, and coniferous species such as P. massoniana might belong to the slow investment species with lower specific leaf area, N and P concentrations, displaying relatively efficient in N and P resorption and utilization in comparison with other species. In contrast, deciduous broadleaved species such as S. mukoraiensis might be the fast investment species with low N and P use efficiency. Interestingly, tree species being restricted by N availability did not exhibit higher N resorption efficiency in the common-garden. Similarly, C. carlesii, the only P-restricted species here, did not exhibit higher P resorption efficiency. Our results provided scientific support for afforestation practice in the mid-subtropics.


Subject(s)
Cunninghamia , Trees , China , Nitrogen/analysis , Phosphorus , Plant Leaves/chemistry
16.
Sci Rep ; 9(1): 9811, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31285516

ABSTRACT

Naphthalene is a biocide of soil fauna, particularly of soil arthropods, that has been widely applied to test the functional roles of soil fauna in soil processes. However, whether the use of naphthalene to expel soil fauna has a non-target effect on soil bacteria in subalpine forests remains unclear. We conducted a naphthalene treatment experiment to explore the effects of naphthalene on the soil bacterial community in subalpine forest soil. The results suggested that naphthalene treatment (at 100 g.m-2 per month) significantly increased the abundances of total bacterial, gram-positive bacterial and gram-negative bacterial phospholipid fatty acids (PLFA) and did not change the microbial biomass carbon (MBC), microbial biomass nitrogen (MBN) or MBC/MBN ratio. Moreover, a total of 1038 operational taxonomic units (OTUs) were detected by Illumina MiSeq sequencing analysis. Proteobacteria, Actinobacteria, and Acidobacteria Chloroflexi were the dominant phyla, and Bradyrhizobium was the most abundant genus. The naphthalene treatment did not affect soil bacterial diversity or community structure. Overall, these results demonstrated that the naphthalene treatment had non-target effects on the active bacterial community abundance but not the soil bacterial community structure. Thus, the non-target effects of naphthalene treatment should be considered before using it to expel soil fauna.


Subject(s)
Bacteria/classification , Bacteria/growth & development , Naphthalenes/adverse effects , Soil/chemistry , Bacteria/drug effects , Biomass , China , Forests , High-Throughput Nucleotide Sequencing , Nitrogen/analysis , Phylogeny , Sequence Analysis, DNA , Soil Microbiology
17.
Sci Rep ; 9(1): 2849, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30809005

ABSTRACT

Naphthalene has been widely used to study the role of soil fauna, but its potential non-target effects on soil enzyme activity remain unknown in subalpine forests. We added naphthalene for two years and determined the effect of such additions on the abundance of soil fauna and soil enzyme activities (ß-glucosidase, cellobiohydrolase, invertase, peroxidase, polyphenol oxidase, N-acetyl-ß-D-glucosaminidase, leucine arylamidase, urease, nitrate reductase and nitrite reductase) in a subalpine forest. Naphthalene could efficiently suppress the individual density and population of soil fauna in situ. The individual density and number of groups were decreased by 72.6-84.8% and 15.0-28.0%, respectively. Naphthalene significantly affected the activities of ß-glucosidase, cellobiohydrolase, polyphenol oxidase, N-acetyl-ß-D-glucosaminidase, leucine arylamidase and nitrite reductase and the activity increased in the first litter peak of naphthalene addition, and decreased at the later. The activities of ß-glucosidase, cellobiohydrolase, polyphenol oxidase, peroxidase, N-acetyl-ß-D-glucosaminidase, leucine arylamidase and nitrite reductase showed a negative correlation with the soil microbial PLFAs. Conversely, the activities of invertase, urease and nitrate reductase were positively correlated with the soil microbial PLFAs. Our results suggest that naphthalene is an effective method to reduce soil fauna in subalpine forest. The enzyme activity was influenced by soil fauna and microbial PLFAs.


Subject(s)
Enzymes/metabolism , Naphthalenes/pharmacology , Soil Microbiology , Soil/chemistry , Catechol Oxidase , Cellulose 1,4-beta-Cellobiosidase , China , Forests , Hexosaminidases , Nitrate Reductase , Nitrite Reductases , Peroxidase , Urease , beta-Fructofuranosidase
18.
Sci Rep ; 9(1): 2052, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30765728

ABSTRACT

Repeated freeze-thaw cycles (FTCs) can alter the relationships between plant litter and soil nitrogen (N) mineralization in subalpine ecosystems, but little information is available about the underlying mechanisms. Therefore, a controlled soil incubation experiment was carried out to study the effects of litter removal on soil N mineralization during FTCs, and the results indicated that FTCs promoted soil N mineralization more than the continuously frozen or nonfrozen condition did. Litter removal promoted soil ammonium N (NH4+-N) and dissolved organic N (DON) as well as the cumulative N mineralization (CNM) and ammonification, but it reduced the soil microbial biomass N (MBN) in the early stage of FTCs. With an increasing number of FTCs, litter removal significantly reduced the CNM but increased the soil MBN. The modified first-order kinetics model was verified under incubation conditions and predicted a lower soil N mineralization rate in FTCs with litter removal. In addition, the dominant factor impacting soil N mineralization was soil NO3--N, and soil MBN had a greater influence on soil N mineralization when litter remained than when it was removed. These results further clarify the mechanism driving the effect of plant residues on soil N cycling.

19.
Chemosphere ; 216: 419-427, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30384312

ABSTRACT

Plant litter decomposition is an important pathway of heavy metal cycling in forested soil and watershed ecosystems globally, but is so far an overlooked aspects in the existing literature. To investigate the temporal dynamics of heavy metals in decomposing litter, we conducted a two-year field experiment using litterbag method across aquatic and terrestrial ecosystems in an alpine forest on the eastern Tibetan Plateau. Using multigroup comparisons of structural equation modeling with different litter mass-loss intervals, we assessed the direct and indirect effects of several biotic and abiotic factors on the release rates of lead (Pb), cadmium (Cd), and chromium (Cr). Results suggested that both the concentrations and amounts of Pb, Cd, and Cr increased during litter decomposition regardless of ecosystem type and litter species, showing an immobilization pattern. The release rates of Pb, Cd, or Cr shared a common hierarchy of drivers across aquatic and terrestrial ecosystems, with environmental factors and initial litter quality having both direct and indirect effects, and the effects of initial litter quality gained importance in the late decomposition stages. However, litter chemical dynamics and microbial diversity index have significant effects on release rates throughout the decomposition process. Our results are useful for better understanding heavy metal fluxes in aquatic and terrestrial ecosystems, and for predicting anthropogenic heavy metal pollution impacts on ecosystems. In addition, our results indicated that not only spatial but also temporal variability should be taken into consideration when addressing heavy metal dynamics accompanying litter decomposition process.


Subject(s)
Ecosystem , Metals, Heavy/chemistry , Soil/chemistry , Environmental Pollution/analysis , Forests , Metals, Heavy/analysis
20.
Sci Rep ; 8(1): 17525, 2018 12 03.
Article in English | MEDLINE | ID: mdl-30510214

ABSTRACT

Despite the importance of nitrogen (N) deposition for soil biogeochemical cycle, how N addition affects the accumulation of humic substances in decomposing litter still remains poorly understood. A litterbag experiment was conducted to assess the potential effects of N addition (0 kg·N·ha-1·year-1, 20 kg·N·ha-1·year-1 and 40 kg·N·ha-1·year-1) on mass remaining and humification of two leaf litter (Michelia wilsonii and Camptotheca acuminata) in a subtropical forest of southwestern China. After one year of decomposition, litter mass was lost by 38.1-46.5% for M. wilsonii and 61.7-74.5% for C. acuminata, respectively. Humic substances were declined by 12.1-23.8% in M. wilsonii and 29.1-35.5% in C. acuminata, respectively. Nitrogen additions tended to reduce mass loss over the experimental period. Moreover, N additions did not affect the concentrations of humic substances and humic acid in the early stage but often increased them in the late stage. The effect of N addition on the accumulation of humic substances was stronger for C. acuminate litter than in M. wilsonii litter. Litter N and P contents showed positive correlations with concentrations of humic substances and fulvic acid. Our results suggest that both litter quality and season-driven environmental changes interactively mediate N impacts on litter humification. Such findings have important implications for carbon sequestration via litter humification in the subtropical forest ecosystems experiencing significant N deposition.

SELECTION OF CITATIONS
SEARCH DETAIL