Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Translat ; 48: 53-69, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39170747

ABSTRACT

Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.

2.
Article in English | MEDLINE | ID: mdl-38758991

ABSTRACT

BACKGROUND: Ultrasound has a long history as a diagnostic and therapeutic tool. Low-intensity pulsed ultrasound (LIPUS), whose intensity is below 300 mW/cm2, has been widely used in orthopedic rehabilitation treatment. However, the detailed bioeffects and underlying mechanisms of LIPUS treatment need to be explored. OBJECTIVE: To make a comprehensive view of the field, bibliometric and visualization analysis was used to reveal the global research trends of LIPUS in orthopedics and rehabilitation treatment between 1994 and 2023. METHODS: All literature data on LIPUS were retrieved from the Web of Science Core Collection database. VOSviewer and CiteSpace were applied for the bibliometric and visualization analysis. RESULTS: A total of 760 publications were included. The distribution of publications generally showed an unstable rising trend. China had the highest number of publications (28.0%), and Chong Qing Medical University was the organization with the highest number of publications (5.8%). Ultrasound in Medicine and Biology had the highest number of publications (8.8%), while BMJ-British Medical Journal had the highest impact factor among the retrieved journals. Ling Qin from the Chinese University of Hong Kong was the most active researcher. Our overlay visualization map showed that the keywords such as pain, knee osteoarthritis, apoptosis, chondrocytes, cartilage, and autophagy, which link to osteoarthritis, have becoming the new research trends and hotspots. CONCLUSION: LIPUS is a popular and increasingly important area of orthopedic rehabilitation, and collaboration of authors from different countries should be further strengthened. Predictably, clinical application of LIPUS on chronic inflammation-related diseases and regenerative medicine, and in-depth biological mechanisms are the orientations of LIPUS in orthopedic rehabilitation treatment.

3.
Autophagy ; 20(7): 1651-1672, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38433354

ABSTRACT

Macroautophagy/autophagy-mediated anoikis resistance is crucial for tumor metastasis. As a key autophagy-related protein, ATG4B has been demonstrated to be a prospective anti-tumor target. However, the existing ATG4B inhibitors are still far from clinical application, especially for tumor metastasis. In this study, we identified a novel circRNA, circSPECC1, that interacted with ATG4B. CircSPECC1 facilitated liquid-liquid phase separation of ATG4B, which boosted the ubiquitination and degradation of ATG4B in gastric cancer (GC) cells. Thus, pharmacological addition of circSPECC1 may serve as an innovative approach to suppress autophagy by targeting ATG4B. Specifically, the circSPECC1 underwent significant m6A modification in GC cells and was subsequently recognized and suppressed by the m6A reader protein ELAVL1/HuR. The activation of the ELAVL1-circSPECC1-ATG4B pathway was demonstrated to mediate anoikis resistance in GC cells. Moreover, we also verified that the above pathway was closely related to metastasis in tissues from GC patients. Furthermore, we determined that the FDA-approved compound lopinavir efficiently enhanced anoikis and prevented metastasis by eliminating repression of ELAVL1 on circSPECC1. In summary, this study provides novel insights into ATG4B-mediated autophagy and introduces a viable clinical inhibitor of autophagy, which may be beneficial for the treatment of GC with metastasis.


Subject(s)
Anoikis , Autophagy , Cysteine Endopeptidases , Lopinavir , RNA, Circular , Anoikis/drug effects , Autophagy/drug effects , Humans , RNA, Circular/metabolism , RNA, Circular/genetics , Cell Line, Tumor , Cysteine Endopeptidases/metabolism , Lopinavir/pharmacology , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Autophagy-Related Proteins/metabolism , Animals , Mice , Ubiquitination/drug effects
4.
Chin Med ; 19(1): 25, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360724

ABSTRACT

Osteoarthritis (OA) is the most prevalent degenerative musculoskeletal disease, severely impacting the function of patients and potentially leading to disability, especially among the elderly population. Natural products (NPs), obtained from components or metabolites of plants, animals, microorganisms etc., have gained significant attention as important conservative treatments for various diseases. Recently, NPs have been well studied in preclinical and clinical researches, showing promising potential in the treatment of OA. In this review, we summed up the main signaling pathways affected by NPs in OA treatment, including NF-κB, MAPKs, PI3K/AKT, SIRT1, and other pathways, which are related to inflammation, anabolism and catabolism, and cell death. In addition, we described the therapeutic effects of NPs in different OA animal models and the current clinical studies in OA patients. At last, we discussed the potential research directions including in-depth analysis of the mechanisms and new application strategies of NPs for the OA treatment, so as to promote the basic research and clinical transformation in the future. We hope that this review may allow us to get a better understanding about the potential bioeffects and mechanisms of NPs in OA therapy, and ultimately improve the effectiveness of NPs-based clinical conservative treatment for OA patients.

5.
Theranostics ; 14(1): 265-282, 2024.
Article in English | MEDLINE | ID: mdl-38164153

ABSTRACT

Lymphatic vessel networks are a main part of the vertebrate cardiovascular system, which participate in various physiological and pathological processes via regulation of fluid transport and immunosurveillance. Targeting lymphatic vessels has become a potent strategy for treating various human diseases. The presence of varying degrees of inflammation in joints of rheumatoid arthritis (RA) and osteoarthritis (OA), characterized by heightened infiltration of inflammatory cells, increased levels of inflammatory factors, and activation of inflammatory signaling pathways, significantly contributes to the disruption of cartilage and bone homeostasis in arthritic conditions. Increasing evidence has demonstrated the pivotal role of lymphatic vessels in maintaining joint homeostasis, with their pathological alterations closely associated with the initiation and progression of inflammatory joint diseases. In this review, we provide a comprehensive overview of the evolving knowledge regarding the structural and functional aspects of lymphatic vessels in the pathogenesis of RA and OA. In addition, we summarized the potential regulatory mechanisms underlying the modulation of lymphatic function in maintaining joint homeostasis during inflammatory conditions, and further discuss the distinctions between RA and OA. Moreover, we describe therapeutic strategies for inflammatory arthritis based on lymphatic vessels, including the promotion of lymphangiogenesis, restoration of proper lymphatic vessel function through anti-inflammatory approaches, enhancement of lymphatic contractility and drainage, and alleviation of congestion within the lymphatic system through the elimination of inflammatory cells. At last, we envisage potential research perspectives and strategies to target lymphatic vessels in treating these inflammatory joint diseases.


Subject(s)
Arthritis, Rheumatoid , Lymphatic Vessels , Osteoarthritis , Humans , Arthritis, Rheumatoid/pathology , Osteoarthritis/metabolism , Lymphatic Vessels/metabolism , Inflammation/metabolism , Lymphangiogenesis
6.
Chin J Traumatol ; 27(3): 168-172, 2024 May.
Article in English | MEDLINE | ID: mdl-38262890

ABSTRACT

PURPOSE: To identify the risk factors for training-related lower extremity muscle injuries in young males by a non-invasive method of body composition analysis. METHODS: A total of 282 healthy young male volunteers aged 18 - 20 years participated in this cohort study. Injury location, degree, and injury rate were adjusted by a questionnaire based on the overuse injury assessment methods used in epidemiological studies of sports injuries. The occurrence of training injuries is monitored and diagnosed by physicians and treated accordingly. The body composition was measured using the BodyStat QuadScan 4000 multifrequency Bio-impedance system at 5, 50, 100 and 200 kHz to obtain 4 impedance values. The Shapiro-Wilk test was used to check whether the data conformed to a normal distribution. Data of normal distribution were shown as mean ± SD and analyzed by t-test, while those of non-normal distribution were shown as median (Q1, Q3) and analyzed by Wilcoxon rank sum test. The receiver operator characteristic curve and logistic regression analysis were performed to investigate risk factors for developing training-related lower extremity injuries and accuracy. RESULTS: Among the 282 subjects, 78 (27.7%) developed training injuries. Lower extremity training injuries revealed the highest incidence, accounting for 23.4% (66 cases). These patients showed higher percentages of lean body mass (p = 0.001), total body water (TBW, p = 0.006), extracellular water (p = 0.020) and intracellular water (p = 0.010) as well as a larger ratio of basal metabolic rate/total weight (p = 0.006), compared with those without lower extremity muscle injuries. On the contrary, the percentage of body fat (p = 0.001) and body fat mass index (p = 0.002) were lower. Logistic regression analysis showed that TBW percentage > 65.35% (p = 0.050, odds ratio = 3.114) and 3rd space water > 0.95% (p = 0.045, odds ratio = 2.342) were independent risk factors for lower extremity muscle injuries. CONCLUSION: TBW percentage and 3rd space water measured with bio-impedance method are potential risk factors for predicting the incidence of lower extremity muscle injuries in young males following training.


Subject(s)
Body Water , Lower Extremity , Muscle, Skeletal , Humans , Male , Risk Factors , Young Adult , Adolescent , Lower Extremity/injuries , Muscle, Skeletal/injuries , Athletic Injuries/epidemiology , Body Composition , Cohort Studies
7.
Genomics ; 116(1): 110764, 2024 01.
Article in English | MEDLINE | ID: mdl-38113974

ABSTRACT

Sorafenib is currently the first-line treatment for patients with advanced liver cancer, but its therapeutic efficacy declines significantly after a few months of treatment. Therefore, it is of great importance to investigate the regulatory mechanisms of sorafenib sensitivity in liver cancer cells. In this study, we provided initial evidence demonstrating that circPHKB, a novel circRNA markedly overexpressed in sorafenib-treated liver cancer cells, attenuated the sensitivity of liver cancer cells to sorafenib. Mechanically, circPHKB sequestered miR-1234-3p, resulting in the up-regulation of cytochrome P450 family 2 subfamily W member 1 (CYP2W1), thereby reducing the killing effect of sorafenib on liver cancer cells. Moreover, knockdown of circPHKB sensitized liver cancer cells to sorafenib in vivo. The findings reveal a novel circPHKB/miR-1234-3p/CYP2W1 pathway that decreases the sensitivity of liver cancer cells to sorafenib, suggesting that circPHKB and the axis may serve as promising targets to improve the therapeutic efficacy of sorafenib against liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , MicroRNAs , Humans , Sorafenib/pharmacology , Sorafenib/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , MicroRNAs/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Up-Regulation , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Cell Proliferation , Drug Resistance, Neoplasm , Cytochrome P450 Family 2/genetics
SELECTION OF CITATIONS
SEARCH DETAIL