Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38742521

ABSTRACT

Ferroptosis is a non-apoptotic, iron-dependent regulatory form of cell death characterized by the accumulation of intracellular reactive oxygen species. In recent years, a large and growing body of literature has investigated ferroptosis. Since ferroptosis is associated with various physiological activities and regulated by a variety of cellular metabolism and mitochondrial activity, ferroptosis has been closely related to the occurrence and development of many diseases, including cancer, aging, neurodegenerative diseases, ischemia-reperfusion injury and other pathological cell death. The regulation of ferroptosis mainly focuses on three pathways: system Xc-/GPX4 axis, lipid peroxidation and iron metabolism. The genes involved in these processes were divided into driver, suppressor and marker. Importantly, small molecules or drugs that mediate the expression of these genes are often good treatments in the clinic. Herein, a newly developed database, named 'FERREG', is documented to (i) providing the data of ferroptosis-related regulation of diseases occurrence, progression and drug response; (ii) explicitly describing the molecular mechanisms underlying each regulation; and (iii) fully referencing the collected data by cross-linking them to available databases. Collectively, FERREG contains 51 targets, 718 regulators, 445 ferroptosis-related drugs and 158 ferroptosis-related disease responses. FERREG can be accessed at https://idrblab.org/ferreg/.


Subject(s)
Ferroptosis , Ferroptosis/genetics , Humans , Disease Progression , Reactive Oxygen Species/metabolism , Lipid Peroxidation , Iron/metabolism , Neoplasms/metabolism , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/drug therapy , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology
2.
Opt Express ; 32(5): 7848-7864, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439455

ABSTRACT

On-chip switchable optical true-time delay lines (OTTDLs) feature a large group delay tuning range but suffer from a discrete tuning step. OTTDLs with a large delay tuning range and a continuous tuning capability are highly desired. In this paper, we propose and experimentally demonstrate a silicon-based broadband continuously tunable OTTDL comprising a 7-bit delay line and a switch-based continuously tunable delay line. The group delay of the entire OTTDL can be continuously tuned from 0 to 1020.16 ps. A delay error within -1.27 ps to 1.75 ps, and a delay fluctuation of less than 2.69 ps in the frequency range of 2∼25 GHz are obtained. We analyze the causes of the delay fluctuation and its influence on beamforming. Moreover, we also propose a simplified non-invasive calibration method that can significantly reduce the complexity of the delay state calibration and can be easily extended to delay lines with more stages of optical switches. The high performance of our OTTDL chip and the calibration method drive practical applications of integrated OTTDLs.

3.
Carcinogenesis ; 45(4): 247-261, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38190483

ABSTRACT

We previously reported that RNF148 was involved in the ubiquitination-mediated degradation of CHAC2. However, its molecular mechanism was not determined. In this study, we investigated the role and mechanism of RNF148 in the progression of colorectal cancer (CRC), especially in the process of ubiquitination-mediated degradation of CHAC2. Our results revealed that RNF148 was upregulated in most CRC tissues, and its expression significantly correlated with the 3-year overall survival rate and most clinicopathological parameters of CRC patients. Furthermore, RNF148 served as an independent prognostic biomarker of CRC and promoted CRC cell proliferation and migration while inhibiting cell apoptosis and sensitivity to 5-FU. Mechanistically, RNF148 used its protease-associated domain to bind to the CHAC domain of CHAC2 and target it for degradation. In addition, we identified two phosphorylation and three ubiquitination residues of CHAC2 and identified Y118 and K102 as the critical phosphorylation and ubiquitination residues, respectively. We also identified CHAC2's and RNF148's interacting proteins and discovered their potential interaction network. In conclusion, our current study unveiled the role of RNF148 in CRC and the mechanism of RNF148 in the ubiquitination-mediated degradation of CHAC2, which shed light on providing potential prognostic biomarkers and molecular targets for CRC patients.


Subject(s)
Colorectal Neoplasms , Ubiquitin-Protein Ligases , gamma-Glutamylcyclotransferase , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Oncogenes , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , gamma-Glutamylcyclotransferase/metabolism
4.
Biomed Pharmacother ; 163: 114839, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37156113

ABSTRACT

N6-methyladenosine (m6A), the most common internal modification in RNA, can be regulated by three types of regulators, including methyltransferases (writers), demethylases (erasers), and m6A binding proteins (readers). Recently, immunotherapy represented by immune checkpoint blocking has increasingly become an effective cancer treatment, and increasing shreds of evidence show that m6A RNA methylation affects cancer immunity in various cancers. Until now, there have been few reviews about the role and mechanism of m6A modification in cancer immunity. Here, we first summarized the regulation of m6A regulators on the expression of target messenger RNAs (mRNA) and their corresponding roles in inflammation, immunity response, immune process and immunotherapy in various cancer cells. Meanwhile, we described the roles and mechanisms of m6A RNA modification in tumor microenvironment and immune response by affecting the stability of non-coding RNA (ncRNA). Moreover, we also discussed the m6A regulators or its target RNAs which might be used as predictor of cancer diagnosis and prognosis, and shed light on the potentiality of m6A methylation regulators as therapeutic targets in cancer immunity.


Subject(s)
Adenosine , Neoplasms , Humans , Methylation , Adenosine/metabolism , Neoplasms/pathology , RNA/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...