Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biotechnol ; 281: 106-114, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-29986837

ABSTRACT

As a bioactive triterpenoid, squalene is widely used in the food industry, cosmetics, and pharmacology. Squalene's major commercial sources are the liver oil of deep-sea sharks and plant oils. In this study, we focused on the enhancement of squalene biosynthesis in Yarrowia lipolytica, with particular attention to the engineering of acetyl-CoA metabolism based on genome-scale metabolic reaction network analysis. Although the overexpression of the rate-limiting endogenous ylHMG1 (3-hydroxy-3-methylglutaryl-CoA reductase gene) could improve squalene synthesis by 3.2-fold over that by the control strain, the availability of the key intracellular precursor, acetyl-CoA, was found to play a more significant role in elevating squalene production. Analysis of metabolic networks with the newly constructed genome-scale metabolic model of Y. lipolytica iYL_2.0 showed that the acetyl-CoA pool size could be increased by redirecting carbon flux of pyruvate dehydrogenation towards the ligation of acetate and CoA or the cleavage of citrate to form oxaloacetate and acetyl-CoA. The overexpression of either acetyl-CoA synthetase gene from Salmonella enterica (acs*) or the endogenous ATP citrate lyase gene (ylACL1) resulted in a more than 50% increase in the cytosolic acetyl-CoA level. Moreover, iterative chromosomal integration of the ylHMG1, asc*, and ylACL1 genes resulted in a significant improvement in squalene production (16.4-fold increase in squalene content over that in the control strain). We also found that supplementation with 10 mM citrate in a flask culture further enhanced squalene production to 10 mg/g DCW. The information obtained in this study demonstrates that rationally engineering acetyl-CoA metabolism to ensure the supply of this key metabolic precursor is an efficient strategy for the enhancement of squalene biosynthesis.


Subject(s)
Acetyl Coenzyme A/metabolism , Squalene/metabolism , Yarrowia/metabolism , ATP Citrate (pro-S)-Lyase/genetics , Acetate-CoA Ligase/genetics , Acetates/pharmacology , Citrates/pharmacology , Metabolic Engineering , Salmonella enterica/genetics , Yarrowia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...