Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 111(14): 141301, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24138230

ABSTRACT

Gravitational lensing of the cosmic microwave background generates a curl pattern in the observed polarization. This "B-mode" signal provides a measure of the projected mass distribution over the entire observable Universe and also acts as a contaminant for the measurement of primordial gravity-wave signals. In this Letter we present the first detection of gravitational lensing B modes, using first-season data from the polarization-sensitive receiver on the South Pole Telescope (SPTpol). We construct a template for the lensing B-mode signal by combining E-mode polarization measured by SPTpol with estimates of the lensing potential from a Herschel-SPIRE map of the cosmic infrared background. We compare this template to the B modes measured directly by SPTpol, finding a nonzero correlation at 7.7σ significance. The correlation has an amplitude and scale dependence consistent with theoretical expectations, is robust with respect to analysis choices, and constitutes the first measurement of a powerful cosmological observable.

2.
Appl Opt ; 52(36): 8747-58, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24513939

ABSTRACT

The increasing scale of cryogenic detector arrays for submillimeter and millimeter wavelength astrophysics has led to the need for large aperture, high index of refraction, low loss, cryogenic refracting optics. Silicon with n=3.4, low loss, and high thermal conductivity is a nearly optimal material for these purposes but requires an antireflection (AR) coating with broad bandwidth, low loss, low reflectance, and a matched coefficient of thermal expansion. We present an AR coating for curved silicon optics comprised of subwavelength features cut into the lens surface with a custom three-axis silicon dicing saw. These features constitute a metamaterial that behaves as a simple dielectric coating. We have fabricated silicon lenses as large as 33.4 cm in diameter with micromachined layers optimized for use between 125 and 165 GHz. Our design reduces average reflections to a few tenths of a percent for angles of incidence up to 30° with low cross polarization. We describe the design, tolerance, manufacture, and measurements of these coatings and present measurements of the optical properties of silicon at millimeter wavelengths at cryogenic and room temperatures. This coating and lens fabrication approach is applicable from centimeter to submillimeter wavelengths and can be used to fabricate coatings with greater than octave bandwidth.

3.
Appl Opt ; 38(24): 5250-3, 1999 Aug 20.
Article in English | MEDLINE | ID: mdl-18324025

ABSTRACT

We have developed a compact dispersion-free TG (transient-grating) FROG (frequency-resolved optical gating) by utilizing a mask that separates the input beam into three distinct beams focused into fused silica to create the FROG signal. Two of the beams are reflected off the same set of mirrors to ensure identical optical paths, eliminating the difficulty in establishing zero time delay between the beams. In addition, the use of only reflective optics avoids material dispersion in the FROG except for the mixing crystal. This TG FROG is capable of operating with an intensity of 1 x 10(11) W/cm(2) and has resolutions less than 0.5 and 1.3 fs for 25- and 10-fs input pulses, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL