Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Tree Physiol ; 44(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-38070187

ABSTRACT

Climate change significantly impacts global forests, leading to tree decline and dieback. To cope with climate change, trees develop several functional traits, such as intra-annual density fluctuations (IADFs) in tree rings. The formation of these traits facilitates trees to optimize resource allocation, allowing them to withstand periods of stress and eventually recover when the conditions become favourable again. This study focuses on a Pinus pinaster Aiton forest in a warm, drought-prone Mediterranean area, comparing two growing seasons with different weather patterns. The innovative continuous monitoring approach used in this study combines high-resolution monitoring of sap flow (SF), analysis of xylogenesis and quantitative wood anatomy. Our results revealed the high plasticity of P. pinaster in water use and wood formation, shedding light on the link between IADFs and tree conductance. Indeed, the capacity to form large cells in autumn (as IADFs) improves the total xylem hydraulic conductivity of this species. For the first time, a continuous SF measurement system captured the dynamics of bimodal SF during the 2022 growing season in conjunction with the bimodal growth pattern observed through xylogenesis monitoring. These results highlight the intricate interplay between environmental conditions, water use, wood formation and tree physiology, providing valuable insights into the acclimation mechanisms employed by P. pinaster to cope with weather fluctuations.


Subject(s)
Pinus , Wood , Wood/anatomy & histology , Xylem/physiology , Pinus/physiology , Seasons , Droughts , Water
2.
Front Plant Sci ; 10: 539, 2019.
Article in English | MEDLINE | ID: mdl-31105731

ABSTRACT

The effect of fire severity on Pinus pinaster growth and ecophysiological responses was evaluated in four burned sites of Vesuvio National Park, Southern Italy. After the wildfire of 2017, when over 1300 hectares of vegetation, mainly P. pinaster woods, were destroyed, four sites were selected according to the different degree of fire severity and a multidisciplinary approach based on tree rings, stable isotopes and percentage of crown scorched or consumed was applied. All the sampled trees in the burned sites showed a decrease in tree growth in 2017, in particular in the latewood at high-severity site. The dendrochronology analyses showed that several individuals experienced and endured higher fire severity in the past compared to 2017 fire. Further δ13C and δ18O underlined the ecophysiological responses and recovery mechanisms of P. pinaster, suggesting a drastic reduction of photosynthetic and stomata activity in the year of the fire. Our findings demonstrated that P. pinaster growth reduction is strictly linked to the percentage of crown scorch and that even trees with high level of crown scorched could survive. In all the burned sites the high temperatures and the time of exposure to the flames were not sufficient to determine the death of the cambium and all the trees were able to complete the 2017 seasonal wood formation. This data can contribute to define guidelines to managers making post-fire silvicultural operations in pine forest stands in the Mediterranean Basin.

SELECTION OF CITATIONS
SEARCH DETAIL