Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Sci Total Environ ; 933: 173108, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38729376

ABSTRACT

Wastewater-based surveillance (WBS) has shown to be an effective tool in monitoring the spread of SARS-CoV-2 and has helped guide public health actions. Consequently, WBS has expanded to now include the monitoring of mpox virus (MPXV) to contribute to its mitigation efforts. In this study, we demonstrate a unique sample processing and a molecular diagnostic strategy for MPXV detection that can inform on the epidemiological situation of mpox outbreaks through WBS. We conducted WBS for MPXV in 22 Canadian wastewater treatment plants (WWTPs) for 14 weeks. Three MPXV qPCR assays were assessed in this study for the detection of MPXV which include the G2R assays (G2R_WA and G2R_G) developed by the Centers for Disease Control and Prevention (CDC) in 2010, and an in-house-developed assay that we have termed G2R_NML. The G2R_NML assay was designed using reference genomes from the 2022 MPXV outbreak and provides a larger qPCR amplicon size to facilitate Sanger sequencing. Results show that all three assays have similar limits of detection and are able to detect the presence of MPXV in wastewater. The G2R_NML assay produced a significantly greater number of Sanger sequence-confirmed MPXV results compared to the CDC G2R assays. Detection of MPXV was possible where provincial surveillance indicated overall low caseloads, and in some sites forewarning of up to several weeks was observed. Overall, this study proposes that WBS of MPXV provides additional information to help fill knowledge gaps in clinical case-surveillance and is potentially an essential component to the management of mpox.

2.
Can Commun Dis Rep ; 49(5): 166-174, 2023 May 01.
Article in English | MEDLINE | ID: mdl-38404704

ABSTRACT

Wastewater-based surveillance (WBS) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) offers a complementary tool for clinical surveillance to detect and monitor coronavirus disease 2019 (COVID-19). Since both symptomatic and asymptomatic individuals infected with SARS-CoV-2 can shed the virus through the fecal route, WBS has the potential to measure community prevalence of COVID-19 without restrictions from healthcare-seeking behaviours and clinical testing capacity. During the Omicron wave, the limited capacity of clinical testing to identify COVID-19 cases in many jurisdictions highlighted the utility of WBS to estimate disease prevalence and inform public health strategies; however, there is a plethora of in-sewage, environmental and laboratory factors that can influence WBS outcomes. The implementation of WBS, therefore, requires a comprehensive framework to outline a pipeline that accounts for these complex and nuanced factors. This article reviews the framework of the national WBS conducted at the Public Health Agency of Canada to present WBS methods used in Canada to track and monitor SARS-CoV-2. In particular, we focus on five Canadian cities-Vancouver, Edmonton, Toronto, Montréal and Halifax-whose wastewater signals are analyzed by a mathematical model to provide case forecasts and reproduction number estimates. The goal of this work is to share our insights on approaches to implement WBS. Importantly, the national WBS system has implications beyond COVID-19, as a similar framework can be applied to monitor other infectious disease pathogens or antimicrobial resistance in the community.

3.
Appl Environ Microbiol ; 88(5): e0174021, 2022 03 08.
Article in English | MEDLINE | ID: mdl-34985977

ABSTRACT

Throughout the coronavirus disease 2019 (COVID-19) pandemic, wastewater surveillance has been used to monitor trends in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) prevalence in the community. A major challenge in establishing wastewater surveillance programs, especially in remote areas, is the need for a well-equipped laboratory for sample analysis. Currently, no options exist for rapid, sensitive, mobile, and easy-to-use wastewater tests for SARS-CoV-2. The performance of the GeneXpert system, which offers cartridge-based, rapid molecular clinical testing for SARS-CoV-2 in a portable platform, was evaluated using wastewater as the input. The GeneXpert demonstrated a SARS-CoV-2 limit of detection in wastewater below 32 copies/mL with a sample processing time of less than an hour. Using wastewater samples collected from multiple sites across Canada during February and March 2021, a high overall agreement (97.8%) was observed between the GeneXpert assay and laboratory-developed tests regarding the presence or absence of SARS-CoV-2. Additionally, with the use of centrifugal filters, the detection threshold of the GeneXpert system was improved to <10 copies/mL in wastewater. Finally, to support on-site wastewater surveillance, GeneXpert testing was implemented in Yellowknife, a remote community in Northern Canada, where its use successfully alerted public health authorities to undetected transmission of COVID-19. The identification of SARS-CoV-2 in wastewater triggered clinical testing of recent travelers and identification of new COVID-19 cases/clusters. Taken together, these results suggest that GeneXpert is a viable option for surveillance of SARS-CoV-2 in wastewater in locations that do not have access to established testing laboratories. IMPORTANCE Wastewater-based surveillance is a powerful tool that provides an unbiased measure of COVID-19 prevalence in a community. This work describes a sensitive wastewater rapid test for SARS-CoV-2 based on a widely distributed technology, the GeneXpert. The advantages of an easy-to-use wastewater test for SARS-CoV-2 are clear: it supports surveillance in remote communities, improves access to testing, and provides faster results allowing for an immediate public health response. The application of wastewater rapid testing in a remote community facilitated the detection of a COVID-19 cluster and triggered public health action, clearly demonstrating the utility of this technology. Wastewater surveillance will become increasingly important in the postvaccination pandemic landscape as individuals with asymptomatic/mild infections continue transmitting SARS-CoV-2 but are unlikely to be tested.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Pandemics , Wastewater , Wastewater-Based Epidemiological Monitoring
4.
Can Commun Dis Rep ; 48(11-12): 522-528, 2022 Nov 03.
Article in English | MEDLINE | ID: mdl-38173468

ABSTRACT

The Antimicrobial Resistance Network (AMRNet) is a laboratory-based antimicrobial resistance (AMR) surveillance system under development at the Public Health Agency of Canada's (PHAC's) National Microbiology Laboratory. The AMRNet surveillance system captures information on antimicrobial susceptibility testing from clinical and veterinary laboratories including both public and private facilities. In the future, the AMRNet system will also capture relevant data from existing PHAC surveillance systems for AMR including the Canadian Integrated Program for Antimicrobial Resistance Surveillance, the Canadian Nosocomial Infection Surveillance Program and the Enhanced Surveillance of Antimicrobial-Resistant Gonorrhea program, and contribute to the Canadian Antimicrobial Resistance Surveillance System. AMRNet's integrated "One Health" approach will allow health professionals and researchers to take a multi-dimensional perspective of AMR in both human and animal health in Canada and will make Canada a leader in AMR surveillance. AMRNet is a collaboration between PHAC, provincial and territorial public health organizations as well as clinical and veterinary laboratories across the country. As part of a phased rollout, AMRNet is now collecting human clinical data from three provinces, from both inpatients and outpatients. Ultimately, AMRNet aims to capture all antimicrobial susceptibility testing results from all bacterial and fungal pathogens across Canada. This article describes the AMRNet surveillance system, including program objectives, system structure and the data collected. The integration of human and animal data in AMRNet will inform One Health responses to AMR issues. The capacity to collect and to disseminate data to stakeholders in real time is a critical step to addressing emerging AMR issues in Canada.

5.
Microb Genom ; 7(12)2021 12.
Article in English | MEDLINE | ID: mdl-34860150

ABSTRACT

Escherichia coli is a priority foodborne pathogen of public health concern and phenotypic serotyping provides critical information for surveillance and outbreak detection activities. Public health and food safety laboratories are increasingly adopting whole-genome sequencing (WGS) for characterizing pathogens, but it is imperative to maintain serotype designations in order to minimize disruptions to existing public health workflows. Multiple in silico tools have been developed for predicting serotypes from WGS data, including SRST2, SerotypeFinder and EToKi EBEis, but these tools were not designed with the specific requirements of diagnostic laboratories, which include: speciation, input data flexibility (fasta/fastq), quality control information and easily interpretable results. To address these specific requirements, we developed ECTyper (https://github.com/phac-nml/ecoli_serotyping) for performing both speciation within Escherichia and Shigella, and in silico serotype prediction. We compared the serotype prediction performance of each tool on a newly sequenced panel of 185 isolates with confirmed phenotypic serotype information. We found that all tools were highly concordant, with 92-97 % for O-antigens and 98-100 % for H-antigens, and ECTyper having the highest rate of concordance. We extended the benchmarking to a large panel of 6954 publicly available E. coli genomes to assess the performance of the tools on a more diverse dataset. On the public data, there was a considerable drop in concordance, with 75-91 % for O-antigens and 62-90 % for H-antigens, and ECTyper and SerotypeFinder being the most concordant. This study highlights that in silico predictions show high concordance with phenotypic serotyping results, but there are notable differences in tool performance. ECTyper provides highly accurate and sensitive in silico serotype predictions, in addition to speciation, and is designed to be easily incorporated into bioinformatic workflows.


Subject(s)
Antigens, Bacterial/genetics , Computational Biology/methods , Escherichia coli/classification , Hexosyltransferases/genetics , Escherichia coli/genetics , Genetic Speciation , Genome, Bacterial , Serotyping , Software , Whole Genome Sequencing
6.
Microb Genom ; 7(9)2021 09.
Article in English | MEDLINE | ID: mdl-34554082

ABSTRACT

Hierarchical genotyping approaches can provide insights into the source, geography and temporal distribution of bacterial pathogens. Multiple hierarchical SNP genotyping schemes have previously been developed so that new isolates can rapidly be placed within pre-computed population structures, without the need to rebuild phylogenetic trees for the entire dataset. This classification approach has, however, seen limited uptake in routine public health settings due to analytical complexity and the lack of standardized tools that provide clear and easy ways to interpret results. The BioHansel tool was developed to provide an organism-agnostic tool for hierarchical SNP-based genotyping. The tool identifies split k-mers that distinguish predefined lineages in whole genome sequencing (WGS) data using SNP-based genotyping schemes. BioHansel uses the Aho-Corasick algorithm to type isolates from assembled genomes or raw read sequence data in a matter of seconds, with limited computational resources. This makes BioHansel ideal for use by public health agencies that rely on WGS methods for surveillance of bacterial pathogens. Genotyping results are evaluated using a quality assurance module which identifies problematic samples, such as low-quality or contaminated datasets. Using existing hierarchical SNP schemes for Mycobacterium tuberculosis and Salmonella Typhi, we compare the genotyping results obtained with the k-mer-based tools BioHansel and SKA, with those of the organism-specific tools TBProfiler and genotyphi, which use gold-standard reference-mapping approaches. We show that the genotyping results are fully concordant across these different methods, and that the k-mer-based tools are significantly faster. We also test the ability of the BioHansel quality assurance module to detect intra-lineage contamination and demonstrate that it is effective, even in populations with low genetic diversity. We demonstrate the scalability of the tool using a dataset of ~8100 S. Typhi public genomes and provide the aggregated results of geographical distributions as part of the tool's output. BioHansel is an open source Python 3 application available on PyPI and Conda repositories and as a Galaxy tool from the public Galaxy Toolshed. In a public health context, BioHansel enables rapid and high-resolution classification of bacterial pathogens with low genetic diversity.


Subject(s)
Bacteria/genetics , Bacterial Typing Techniques/methods , Genotyping Techniques/methods , Polymorphism, Single Nucleotide , Bacteria/classification , Bacteria/isolation & purification , Genetic Variation , Genome, Bacterial , Genotype , Molecular Epidemiology/methods , Mycobacterium tuberculosis/genetics , Phylogeny , Salmonella/genetics , Software , Whole Genome Sequencing
7.
PLoS One ; 13(12): e0207550, 2018.
Article in English | MEDLINE | ID: mdl-30513098

ABSTRACT

Previously we developed and tested the Salmonella GenoSerotyping Array (SGSA), which utilized oligonucleotide probes for O- and H- antigen biomarkers to perform accurate molecular serotyping of 57 Salmonella serotypes. Here we describe the development and validation of the ISO 17025 accredited second version of the SGSA (SGSA v. 2) with reliable and unambiguous molecular serotyping results for 112 serotypes of Salmonella which were verified both in silico and in vitro. Improvements included an expansion of the probe sets along with a new classifier tool for prediction of individual antigens and overall serotype from the array probe intensity results. The array classifier and probe sequences were validated in silico to high concordance using 36,153 draft genomes of diverse Salmonella serotypes assembled from public repositories. We obtained correct and unambiguous serotype assignments for 31,924 (88.30%) of the tested samples and a further 3,916 (10.83%) had fully concordant antigen predictions but could not be assigned to a single serotype. The SGSA v. 2 can directly use bacterial colonies with a limit of detection of 860 CFU/mL or purified DNA template at a concentration of 1.0 x 10-1 ng/µl. The SGSA v. 2 was also validated in the wet laboratory and certified using panel of 406 samples representing 185 different serotypes with correct antigen and serotype determinations for 60.89% of the panel and 18.31% correctly identified but an ambiguous overall serotype determination.


Subject(s)
Genotyping Techniques , Oligonucleotide Array Sequence Analysis/methods , Salmonella/classification , Salmonella/genetics , Serotyping/methods , Food Safety , Internet , Limit of Detection
8.
Microb Genom ; 4(2)2018 02.
Article in English | MEDLINE | ID: mdl-29338812

ABSTRACT

Public health and food safety institutions around the world are adopting whole genome sequencing (WGS) to replace conventional methods for characterizing Salmonella for use in surveillance and outbreak response. Falling costs and increased throughput of WGS have resulted in an explosion of data, but questions remain as to the reliability and robustness of the data. Due to the critical importance of serovar information to public health, it is essential to have reliable serovar assignments available for all of the Salmonella records. The current study used a systematic assessment and curation of all Salmonella in the sequence read archive (SRA) to assess the state of the data and their utility. A total of 67 758 genomes were assembled de novo and quality-assessed for their assembly metrics as well as species and serovar assignments. A total of 42 400 genomes passed all of the quality criteria but 30.16 % of genomes were deposited without serotype information. These data were used to compare the concordance of reported and predicted serovars for two in silico prediction tools, multi-locus sequence typing (MLST) and the Salmonella in silico Typing Resource (SISTR), which produced predictions that were fully concordant with 87.51 and 91.91 % of the tested isolates, respectively. Concordance of in silico predictions increased when serovar variants were grouped together, 89.25 % for MLST and 94.98 % for SISTR. This study represents the first large-scale validation of serovar information in public genomes and provides a large validated set of genomes, which can be used to benchmark new bioinformatics tools.


Subject(s)
Bacterial Typing Techniques/methods , Databases, Nucleic Acid , Salmonella/genetics , Whole Genome Sequencing/methods , Computer Simulation , DNA, Bacterial/genetics , Genome, Bacterial , Multilocus Sequence Typing , Public Health , Reproducibility of Results , Salmonella/classification , Salmonella Infections/microbiology , Salmonella enterica , Sequence Analysis , Serogroup , Serotyping
9.
Front Microbiol ; 8: 1044, 2017.
Article in English | MEDLINE | ID: mdl-28649236

ABSTRACT

Salmonella serotyping remains the gold-standard tool for the classification of Salmonella isolates and forms the basis of Canada's national surveillance program for this priority foodborne pathogen. Public health officials have been increasingly looking toward whole genome sequencing (WGS) to provide a large set of data from which all the relevant information about an isolate can be mined. However, rigorous validation and careful consideration of potential implications in the replacement of traditional surveillance methodologies with WGS data analysis tools is needed. Two in silico tools for Salmonella serotyping have been developed, the Salmonella in silico Typing Resource (SISTR) and SeqSero, while seven gene MLST for serovar prediction can be adapted for in silico analysis. All three analysis methods were assessed and compared to traditional serotyping techniques using a set of 813 verified clinical and laboratory isolates, including 492 Canadian clinical isolates and 321 isolates of human and non-human sources. Successful results were obtained for 94.8, 88.2, and 88.3% of the isolates tested using SISTR, SeqSero, and MLST, respectively, indicating all would be suitable for maintaining historical records, surveillance systems, and communication structures currently in place and the choice of the platform used will ultimately depend on the users need. Results also pointed to the need to reframe serotyping in the genomic era as a test to understand the genes that are carried by an isolate, one which is not necessarily congruent with what is antigenically expressed. The adoption of WGS for serotyping will provide the simultaneous collection of information that can be used by multiple programs within the current surveillance paradigm; however, this does not negate the importance of the various programs or the role of serotyping going forward.

10.
Comp Immunol Microbiol Infect Dis ; 33(6): e111-7, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20619456

ABSTRACT

Synthetic oligodeoxynucleotides (ODN) containing CpG motifs signal through TLR9 and activate innate immunity resulting in protection against a variety of parasitic, bacterial and viral pathogens in mouse models. However, few studies have demonstrated protection in humans and large animals. In the present investigations, we evaluated protection by CpG ODN in a parainfluenza-3 (PI-3) virus infection in neonatal lambs. Subcutaneous (SC) injection of CpG ODN induced high levels of 2'5'-A synthetase and significantly reduced PI-3 virus shedding in newborn lambs. Furthermore, pre-treatment of newborn lambs with SC CpG ODN 2 days, but not 6 days prior to the virus challenge was protective. In contrast, intratracheal (IT) administration of CpG ODN induced 2'5'-A synthetase but had no significant impact on PI-3 virus shedding in nasal secretions. We conclude that a systemic administration of CpG ODN and the timing of the treatment are critical for the protection of neonatal lambs against a respiratory viral infection.


Subject(s)
Oligodeoxyribonucleotides/administration & dosage , Parainfluenza Virus 3, Bovine/physiology , Respirovirus Infections/immunology , Respirovirus Infections/virology , Toll-Like Receptor 9/agonists , Virus Shedding/drug effects , 2',5'-Oligoadenylate Synthetase/blood , Animals , Animals, Newborn , CpG Islands , Female , Immunity, Innate , Injections, Subcutaneous , Male , Sheep , Trachea
11.
Res Vet Sci ; 88(2): 242-50, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19896155

ABSTRACT

The analysis of CpG ODN induced innate immune responses in different animal species has shown substantial similarities and differences in levels and types of induced cytokines profile. The objectives of these studies were to identify innate immune biomarkers activated by three classes of CpG ODNs in pigs. For this purpose, we investigated the kinetics of innate immune responses in immune cells from pigs following in vitro and in vivo stimulation with CpG ODNs. The mRNA expression of cytokine and chemokine genes were assayed by SYBR green based quantitative real time PCR. A-class CpG ODN induced significant but transient levels of IFN-gamma, IL-12 (P40), IL-6, IL-4 and TNF-alpha mRNA, C-class CpG ODN induced significant level of IFN-gamma, IFN-alpha and IL-12 mRNA and the lowest level of IL-4 (Th-2 type) mRNA. A very low level of some cytokines stimulation was observed by GC ODNs. It is noteworthy, that IL-12 (P35) mRNA was significantly stimulated by B-class GpC ODN 7909. Interestingly, all classes of CpG ODNs induced significant level of IP-10 at 12h post stimulation. These in vitro and in vivo observations suggest that interferon-gamma inducible protein 10 (IP-10) may be a reliable biomarker for immune activity induced by CpG ODNs in pigs.


Subject(s)
Chemokine CXCL10/metabolism , Leukocytes, Mononuclear/drug effects , Oligodeoxyribonucleotides/metabolism , Swine/metabolism , Up-Regulation , Animals , Cells, Cultured , Chemokine CXCL10/genetics , Dose-Response Relationship, Drug , Interleukins/genetics , Interleukins/metabolism , Leukocytes, Mononuclear/metabolism , Oligodeoxyribonucleotides/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
12.
Vet Immunol Immunopathol ; 123(3-4): 324-36, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18367252

ABSTRACT

The immune stimulatory effects of synthetic CpG DNA, on porcine peripheral blood mononuclear cells (PBMC) have been reported, but little is known about CpG-induced responses in other lymphoid tissues of pigs. We investigated innate immune responses induced by CpG DNA in cells from blood, lymph nodes (LN) and spleens of pigs. Porcine PBMC and lymph node cells (LNC) were stimulated in vitro with three classes (A-, B- and C-class) of CpG oligodeoxynucleotides (ODNs), and a non-CpG control ODN. All three classes of CpG ODNs induced significant production of IFNalpha, TNFalpha, IL-1, IL-6 and IL-12 in PBMC. In contrast, in LNC, only IL-12 was stimulated by all three classes of CpG ODNs, while IFNalpha, and IL-6 were induced by A- and C-class ODNs. No TNFalpha was induced in LNC by any of the ODNs. Significant lymphocyte proliferation was induced in PBMC by all three classes of CpG ODNs and non-CpG control. However, in LNC, B- and C-class ODNs induced significant proliferation, while no proliferation was seen with A-class and non-CpG control ODN. All three classes of ODNs induced NK-like cytotoxicity in PBMC and spleen cells, but were less effective in inducing NK cytotoxicity in LNC. We then investigated the reasons for the relatively poor CpG-induced responses in LNC. Our investigations revealed that LNC had a lower frequency of IFNalpha-secreting cells and expressed low levels of TLR9 mRNA compared to PBMC. We conclude that the lower number of IFNalpha-secreting cells and receptor expression may contribute to the attenuated responses in LNC following stimulation with CpG ODN.


Subject(s)
Interferon-alpha/immunology , Lymphoid Tissue/immunology , Oligodeoxyribonucleotides/pharmacology , Swine/immunology , Toll-Like Receptor 9/genetics , Animals , Cell Proliferation/drug effects , Cytotoxicity Tests, Immunologic/veterinary , Dose-Response Relationship, Immunologic , Enzyme-Linked Immunosorbent Assay/veterinary , Interferon-alpha/biosynthesis , Lymphoid Tissue/drug effects , Oligodeoxyribonucleotides/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Swine/genetics , Toll-Like Receptor 9/biosynthesis , Toll-Like Receptor 9/immunology
13.
Vet Immunol Immunopathol ; 115(1-2): 24-34, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17067685

ABSTRACT

CpG ODN signal through Toll-like receptor 9 (TLR9) and trigger a cascade of events that lead to activation of innate and adaptive immune responses. Our current understanding of the immunobiology of host responses to CpG is based largely on studies on peripheral blood mononuclear cells (PBMC) and splenocytes. Little is known regarding CpG-induced responses in other lymphoid tissues. In the present study, we investigated responses induced by CpG in both PBMC and lymph nodes. Cells were isolated from the superficial cervical lymph node (LNC) and blood and then stimulated with CpG ODN (either A-, or B- or C-class ODN). Cytokine production was assayed by ELISA, and lymphocyte proliferation was determined by (3)H-thymidine incorporation. NK-like cytotoxicity was analyzed by lysis of (51)Cr-labelled target cells. All three classes of CpG induced IFNalpha and IFNgamma in LNC. In contrast, only A and C-class ODN induced IFNalpha and IFNgamma in PBMC. Moreover, the IFN levels in LNC were 20-40-fold higher than in PBMC. Furthermore, all classes of ODN induced higher IL-12 levels in LNC (five- to six-fold) than in PBMC. Both B and C-class ODN induced good proliferative responses in PBMC and LNC, but the A-class ODN did not induce proliferation of PBMC and only induced moderate proliferation of LNC. A-class ODN induced significant NK-like activity in LNC. Thus, all three classes of CpG ODN induced similar responses in LNC, and these responses were consistently higher than in PBMC. These observations indicate that CpG ODN-induced responses differ between blood and lymph nodes, and suggest that the functional classification of CpG ODN based on PBMC responses may not be directly applicable to cells from other immune tissues.


Subject(s)
Adjuvants, Immunologic/pharmacology , Immunity, Innate/drug effects , Leukocytes, Mononuclear/drug effects , Lymph Nodes/drug effects , Oligodeoxyribonucleotides/pharmacology , Animals , Female , Interferon-alpha/biosynthesis , Interferon-gamma/biosynthesis , Interleukin-12/biosynthesis , Leukocytes, Mononuclear/immunology , Lymph Nodes/immunology , Lymphocyte Activation/drug effects , Male , Sheep
14.
Vet Immunol Immunopathol ; 115(3-4): 357-68, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17194483

ABSTRACT

Mucosal delivery of CpG oligodeoxynucleotide (ODN) in mice has been shown to induce potent innate immunostimulatory responses and protection against infection. We evaluated the efficacy of CpG ODN in stimulating systemic innate immune responses in sheep following delivery to the pulmonary mucosa. Intrapulmonary (IPM) administration of B-Class CpG ODN in saline induced transient systemic responses which included increased rectal temperatures, elevated serum 2'5'-A synthetase and haptoglobin concentrations. The ODN dose required to induce detectable systemic responses following IPM delivery could be reduced by approximately 80% if the CpG ODN was administered in 30% emulsigen instead of saline. Intrapulmonary B-Class CpG ODN formulated in 30% emulsigen produced similar effects when compared to those seen following SC injection. These responses were CpG ODN-specific since control GpC ODN did not induce any detectable response. Intrapulmonary administration of both B-Class and the newly described C-Class CpG ODN produced similar effects indicating that both classes of CpG ODN were comparably effective in stimulating innate immune system following mucosal delivery. Administration of CpG ODN directly into the lungs or delivery of CpG ODN via an intratracheal (IT) infusion also produced similar systemic responses. These observations support the conclusion that mucosal delivery of CpG ODN is an effective route for induction of systemic acute phase responses and antiviral effector molecules in large animals, and may be helpful in controlling systemic infections.


Subject(s)
Oligodeoxyribonucleotides/pharmacology , Respiratory Mucosa/immunology , Sheep/immunology , 2',5'-Oligoadenylate Synthetase/blood , Adjuvants, Immunologic/pharmacology , Animals , Body Temperature , Haptoglobins/metabolism , Immunity, Innate/drug effects , Immunity, Innate/immunology , Male , Oligodeoxyribonucleotides/immunology
15.
Oligonucleotides ; 16(1): 58-67, 2006.
Article in English | MEDLINE | ID: mdl-16584295

ABSTRACT

Stimulation of the innate immune system is potentially very important in neonates who have an immature adaptive immune system and vaccination cannot be used to reduce the risk of infection. CpG oligodeoxynucleotide (ODN) can stimulate innate immune responses in newborn chickens and mice, but similar studies are lacking in other mammalian species. We have shown previously that CpG ODN can both stimulate an acute-phase immune response and induce the antiviral effector molecule, 2'5'-A synthetase, in adult sheep. Therefore, the immunostimulatory activity of A class and B class CpG ODN was evaluated in newborn lambs, and the capacity of CpG ODN-induced responses to reduce viral shedding was evaluated following aerosol challenge with the respiratory pathogen, bovine herpesvirus-1 (BHV-1). In vitro CpG ODN stimulation of peripheral blood mononuclear cells (PBMC) isolated from newborn lambs (3-5 days old) and adult sheep induced equivalent CpG-specific proliferative responses and interferon-alpha (IFN-alpha) secretion. CpG ODN-induced IFN-alpha secretion by neonatal PBMCs was, however, significantly (p < 0.01) enhanced 6 days after subcutaneous (s.c.) injection of 100 microg/kg CpG ODN 2007. Newborn lambs injected s.c. with B class CpG ODN 2007 or the inverted GpC control ODN formulated in 30% Emulsigen (MVP Laboratories, Ralston, NE) displayed CpG ODN-specific increases in body temperature (p < 0.0001), serum 2'5'-A synthetase activity (p = 0.0015), and serum haptoglobin (p = 0.07). CpG ODN-treated lambs also displayed a transient reduction in viral shedding on day 2 postinfection (p < 0.05), which correlated (p < 0.03) with serum 2'5'-A synthetase levels on the day of viral challenge. These observations confirmed that CpG ODNs effectively activate innate immune responses in newborn lambs and CpG ODN-induced antiviral responses correlated with a reduction in viral shedding.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Herpesviridae Infections/veterinary , Herpesvirus 1, Bovine/drug effects , Immunity, Innate/drug effects , Oligodeoxyribonucleotides/therapeutic use , Sheep Diseases/prevention & control , Adjuvants, Immunologic/administration & dosage , Animals , Animals, Newborn , Cattle , Herpesviridae Infections/immunology , Herpesviridae Infections/prevention & control , Leukocytes, Mononuclear/drug effects , Oligodeoxyribonucleotides/administration & dosage , Sheep , Sheep Diseases/immunology , Virus Shedding/drug effects
16.
Vet Immunol Immunopathol ; 108(1-2): 11-6, 2005 Oct 18.
Article in English | MEDLINE | ID: mdl-16098606

ABSTRACT

Non-methylated CpG motifs, present in viral and bacterial DNA, are one of many pathogen-associated molecular patterns (PAMP) recognized by the mammalian innate immune system. Recognition of this PAMP occurs through a specific interaction with toll-like receptor 9 (TLR9) and this interaction can induce cytokine responses that influence both innate and adaptive immune responses. Previous investigations determined that both the flanking sequences in synthetic CpG oligodeoxynucleotides (CpG ODN) and the cellular pattern of TLR9 expression can influence species-specific responses to CpG ODN. Therefore, the structure, function and cellular distribution of bovine TLR9 were compared with what is known for mice and human. Analysis of the bovine TLR9 gene revealed greater sequence homology between cattle and humans than cattle and mice Similar CpG motifs induced optimal activation of both human and bovine leukocytes and these motifs were distinct from those which activated mouse leukocytes. Functional analyses with CpG ODN stimulated bovine blood leukocytes revealed that class A CpG ODN were more potent inducers of interferon-alpha (IFN-alpha) than class B CpG ODN. Furthermore, magnetic activated cell sorting of bovine blood leukocyte subpopulations implicated dendritic cells but not monocytes in the regulation of CpG ODN-induced IFN secretion. Thus, the cellular pattern of CpG ODN-induced responses in cattle shared many similarities with human leukocytes. Collectively, these analyses revealed substantial conservation of TLR9 structure and TLR9 function in blood leukocytes of humans, cattle and other domestic species.


Subject(s)
Toll-Like Receptor 9 , Animals , Cattle , Gene Expression , Humans , Interferon-alpha/biosynthesis , Interferon-beta/biosynthesis , Leukocytes/drug effects , Leukocytes/immunology , Ligands , Mice , Molecular Structure , Oligodeoxyribonucleotides/pharmacology , Species Specificity , Toll-Like Receptor 9/chemistry , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/physiology
17.
J Control Release ; 97(1): 1-17, 2004 May 31.
Article in English | MEDLINE | ID: mdl-15147800

ABSTRACT

Synthetic oligodeoxynucleotides (ODN) containing CpG sequences are recognized as a "danger" signal by the immune system of mammals. As a consequence, CpG ODN stimulate innate and adaptive immune responses in humans and a variety of animal species. Indeed, the potential of CpG ODN as therapeutic agents and vaccine adjuvants has been demonstrated in animal models of infectious diseases, allergy and cancer and are currently undergoing clinical trials in humans. While CpG ODN are potent activators of the immune system, their biologic activity is often transient, subsequently limiting their therapeutic application. Modifications in the CpG ODN backbone chemistry, various delivery methods including mixing or cross-linking of ODN to other carrier compounds have been shown to significantly enhance the biologic activity of ODN. However, the exact mechanisms that mediate this enhancement of activity are not well understood and may include local cell recruitment and activation, cytokine production, upregulation of receptor expression and increasing the half-life of ODN through creation of a depot. We will review the various approaches that have been used in enhancing the immunostimulatory effects of CpG ODN in vivo and also discuss the possible mechanisms that may be involved in this enhancement.


Subject(s)
Adjuvants, Immunologic/administration & dosage , CpG Islands/genetics , Oligodeoxyribonucleotides/administration & dosage , Adjuvants, Immunologic/genetics , Adjuvants, Immunologic/pharmacokinetics , Animals , Humans , Oligodeoxyribonucleotides/genetics , Oligodeoxyribonucleotides/pharmacokinetics
18.
Vet Immunol Immunopathol ; 99(1-2): 87-98, 2004 May.
Article in English | MEDLINE | ID: mdl-15113657

ABSTRACT

The pathogenic mechanisms involved in tropical theileriosis, caused by the tick-borne protozoan parasite Theileria annulata, are unclear. Pathology is associated with the schizont stage of the parasite, which resides within bovine macrophages. Breed-specific differences in pathology have been observed in cattle, several Bos indicus breeds are relatively resistant to tropical theileriosis whilst Bos taurus cattle are highly susceptible. Infected cells express pro-inflammatory cytokines and it has been hypothesized that these cytokines play a major role in the pathology of the disease. Therefore, using quantitative RT-PCR we investigated the expression of the key candidates, interleukin 1 beta (IL-1beta), IL-6 and tumour necrosis factor alpha (TNF-alpha), in T. annulata low passage infected cell lines derived ex vivo from experimental infection of resistant and susceptible cattle. mRNA for each cytokine was detected in all cell lines investigated at levels higher than those observed in resting monocytes. However, the analyses did not identify any breed-specific differences. Therefore, these results are not consistent with the hypothesis that differential regulation of infected cell derived pro-inflammatory cytokines (IL-1beta, IL-6 and TNF-alpha) accounts for the breed-related differences in resistance and susceptibility to T. annulata infection. Other, currently unknown mechanisms may be of greater importance.


Subject(s)
Cattle Diseases/parasitology , Theileria annulata/immunology , Theileriasis/immunology , Animals , Cattle , Cattle Diseases/blood , Cattle Diseases/immunology , Cell Line , Genetic Predisposition to Disease , Interleukin-1/genetics , Interleukin-1/immunology , Interleukin-6/genetics , Interleukin-6/immunology , RNA, Protozoan/chemistry , RNA, Protozoan/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Theileria annulata/genetics , Theileriasis/blood , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
19.
Cell Immunol ; 227(1): 24-37, 2004 Jan.
Article in English | MEDLINE | ID: mdl-15051512

ABSTRACT

Immunostimulatory CpG oligodeoxynucleotide (ODN) can protect mice against infection by many pathogens but the mechanisms mediating disease protection are not well defined. Furthermore, the mechanisms of CpG ODN induced disease protection in vivo have not been investigated in other species. We investigated the induction of antiviral effector molecules in sheep treated with a class B CpG ODN (2007). Subcutaneous injection of ODN 2007 induced a dose-dependent increase in serum levels of the antiviral effector molecule, 2'5'-A synthetase. Peak levels of enzyme were observed 4 days following ODN injection and enzyme levels remained elevated for the following 3-5 days. Repeated ODN injections induced a more sustained elevation of serum 2'5'-A synthetase activity. Finally, formulation of ODN 2007 in emulsigen increased the level of serum 2'5'-A synthetase activity and this response was CpG-specific. Elevated serum 2'5'-A synthetase activity suggested that CpG ODN acted through the induction of either interferon (IFN)-alpha or IFN-gamma. ODN 2007 did not induce detectable levels of IFN-alpha or IFN-gamma when incubated with peripheral blood mononuclear cells, but both IFN-alpha and IFN-gamma were detected following stimulation of lymph node cells with ODN 2007. CpG ODN induction of 2'5'-A synthetase in vitro correlated with the secretion of both IFN-alpha and IFN-gamma. Furthermore, immunohistochemical staining of skin revealed a marked cellular infiltration at the site of ODN 2007 injection. This cellular infiltration was CpG-specific and consisted of primarily CD172(+) myeloid cells. Many of the cells recruited to the site of ODN 2007 injection expressed IFN-alpha and some IFN-gamma. These observations support the conclusion that localized cell recruitment and activation contribute to CpG ODN induction of antiviral effector molecules, such as interferon and 2'5'-A synthetase.


Subject(s)
2',5'-Oligoadenylate Synthetase/blood , Antiviral Agents/blood , Oligodeoxyribonucleotides/immunology , Oligodeoxyribonucleotides/metabolism , 2',5'-Oligoadenylate Synthetase/metabolism , Adjuvants, Immunologic/metabolism , Animals , Cattle , Cells, Cultured , Female , Immunoglobulins/immunology , Immunoglobulins/metabolism , Interferon-alpha/metabolism , Interferon-gamma/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Lymph Nodes/cytology , Male , Sheep , Skin/cytology , Skin/metabolism
20.
Immunology ; 110(2): 250-7, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14511239

ABSTRACT

Examples exist in the literature that demonstrate that treatment with immunostimulatory cytosine-phosphate-guanosine (CpG)-DNA can protect mice against infection by intracellular pathogens. There are, however, few studies reporting that CpG-DNA offers similar disease protection in other species. In this study, we assessed the potential of a class A and class B CpG oligodeoxynucleotide (ODN) to induce innate immune responses in sheep, an outbred species. Using peripheral blood mononuclear cells, we have for the first time demonstrated CpG-ODN-induced innate immune responses, including natural-killer-like activity [non-major histocompatibility complex (MHC)-restricted cytotoxicity], interferon-alpha secretion and 2'-5'A oligoadenylate synthetase activity, that could contribute to immune protection in sheep. The type and magnitude of these responses were dependent on ODN class and non-MHC-restricted killing was not associated with interferon-gamma production. The latter observation is in contrast with observations reported for mice and humans. These observations support the conclusion that differences in CpG-ODN-induced responses exist among species and that specific ODN sequences can significantly influence innate immune responses.


Subject(s)
Leukocytes, Mononuclear/immunology , Oligodeoxyribonucleotides/immunology , Sheep, Domestic/immunology , 2',5'-Oligoadenylate Synthetase/metabolism , Animals , CpG Islands/immunology , Culture Techniques , Female , Interferon-alpha/biosynthesis , Interferon-gamma/biosynthesis , Killer Cells, Natural/immunology , Lymphocyte Activation/immunology , Male , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...