Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Elife ; 122024 Jan 15.
Article in English | MEDLINE | ID: mdl-38224289

ABSTRACT

Inter-organ communication is a vital process to maintain physiologic homeostasis, and its dysregulation contributes to many human diseases. Given that circulating bioactive factors are stable in serum, occur naturally, and are easily assayed from blood, they present obvious focal molecules for therapeutic intervention and biomarker development. Recently, studies have shown that secreted proteins mediating inter-tissue signaling could be identified by 'brute force' surveys of all genes within RNA-sequencing measures across tissues within a population. Expanding on this intuition, we reasoned that parallel strategies could be used to understand how individual genes mediate signaling across metabolic tissues through correlative analyses of gene variation between individuals. Thus, comparison of quantitative levels of gene expression relationships between organs in a population could aid in understanding cross-organ signaling. Here, we surveyed gene-gene correlation structure across 18 metabolic tissues in 310 human individuals and 7 tissues in 103 diverse strains of mice fed a normal chow or high-fat/high-sucrose (HFHS) diet. Variation of genes such as FGF21, ADIPOQ, GCG, and IL6 showed enrichments which recapitulate experimental observations. Further, similar analyses were applied to explore both within-tissue signaling mechanisms (liver PCSK9) and genes encoding enzymes producing metabolites (adipose PNPLA2), where inter-individual correlation structure aligned with known roles for these critical metabolic pathways. Examination of sex hormone receptor correlations in mice highlighted the difference of tissue-specific variation in relationships with metabolic traits. We refer to this resource as gene-derived correlations across tissues (GD-CAT) where all tools and data are built into a web portal enabling users to perform these analyses without a single line of code (gdcat.org). This resource enables querying of any gene in any tissue to find correlated patterns of genes, cell types, pathways, and network architectures across metabolic organs.


Subject(s)
Proprotein Convertase 9 , Signal Transduction , Humans , Animals , Mice , Homeostasis , Adiposity
2.
PLoS Comput Biol ; 19(12): e1011652, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38060459

ABSTRACT

Information is the cornerstone of research, from experimental (meta)data and computational processes to complex inventories of reagents and equipment. These 10 simple rules discuss best practices for leveraging laboratory information management systems to transform this large information load into useful scientific findings.

4.
J Virol ; 97(4): e0022523, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37039663

ABSTRACT

Acute and chronic viral infections result in the differentiation of effector and exhausted T cells with functional and phenotypic differences that dictate whether the infection is cleared or progresses to chronicity. High CD38 expression has been observed on CD8+ T cells across various viral infections and tumors in patients, suggesting an important regulatory function for CD38 on responding T cells. Here, we show that CD38 expression was increased and sustained on exhausted CD8+ T cells following chronic lymphocytic choriomeningitis virus (LCMV) infection, with lower levels observed on T cells from acute LCMV infection. We uncovered a cell-intrinsic role for CD38 expression in regulating the survival of effector and exhausted CD8+ T cells. We observed increased proliferation and function of Cd38-/- CD8+ progenitor exhausted T cells compared to those of wild-type (WT) cells. Furthermore, decreased oxidative phosphorylation and glycolytic potential were observed in Cd38-/- CD8+ T cells during chronic but not acute LCMV infection. Our studies reveal that CD38 has a dual cell-intrinsic function in CD8+ T cells, where it decreases proliferation and function yet supports their survival and metabolism. These findings show that CD38 is not only a marker of T cell activation but also has regulatory functions on effector and exhausted CD8+ T cells. IMPORTANCE Our study shows how CD38 expression is regulated on CD8+ T cells responding during acute and chronic viral infection. We observed higher CD38 levels on CD8+ T cells during chronic viral infection compared to levels during acute viral infection. Deleting CD38 had an important cell-intrinsic function in ensuring the survival of virus-specific CD8+ T cells throughout the course of viral infection. We found defective metabolism in Cd38-/- CD8+ T cells arising during chronic infection and changes in their progenitor T cell phenotype. Our studies revealed a dual cell-intrinsic role for CD38 in limiting proliferation and granzyme B production in virus-specific exhausted T cells while also promoting their survival. These data highlight new avenues for research into the mechanisms through which CD38 regulates the survival and metabolism of CD8+ T cell responses to viral infections.


Subject(s)
Lymphocytic Choriomeningitis , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cell Differentiation/genetics , Lymphocytic Choriomeningitis/metabolism , Lymphocytic choriomeningitis virus/genetics , Persistent Infection , Animals , Mice , Cell Survival/genetics , Up-Regulation , Cell Proliferation/genetics
5.
Front Endocrinol (Lausanne) ; 14: 1279878, 2023.
Article in English | MEDLINE | ID: mdl-38260148

ABSTRACT

Introduction: Female reproductive function depends on a choreographed sequence of hormonal secretion and action, where specific stresses such as inflammation exert profound disruptions. Specifically, acute LPS-induced inflammation inhibits gonadotropin production and secretion from the pituitary, thereby impacting the downstream production of sex hormones. These outcomes have only been observed in acute inflammatory stress and little is known about the mechanisms by which chronic inflammation affects reproduction. In this study we seek to understand the chronic effects of LPS on pituitary function and consequent luteinizing and follicle stimulating hormone secretion. Methods: A chronic inflammatory state was induced in female mice by twice weekly injections with LPS over 6 weeks. Serum gonadotropins were measured and bulk RNAseq was performed on the pituitaries from these mice, along with basic measurements of reproductive biology. Results: Surprisingly, serum luteinizing and follicle stimulating hormone was not inhibited and instead we found it was increased with repeated LPS treatments. Discussion: Analysis of bulk RNA-sequencing of murine pituitary revealed paracrine activation of TGFß pathways as a potential mechanism regulating FSH secretion in response to chronic LPS. These results provide a framework with which to begin dissecting the impacts of chronic inflammation on reproductive physiology.


Subject(s)
Lipopolysaccharides , Pituitary Diseases , Female , Animals , Mice , Pituitary Gland , Gene Expression Profiling , Transcriptome , Gonadotropins, Pituitary , Inflammation/chemically induced
6.
Trends Biochem Sci ; 47(10): 814-818, 2022 10.
Article in English | MEDLINE | ID: mdl-35644775

ABSTRACT

The process of starting a laboratory varies between institutions. However, there are universal tasks all investigators will need to address when launching their laboratories. In this piece, we provide a brief summary of considerations for incoming group leaders to centralize this information for the scientific community.


Subject(s)
Laboratories , Research Personnel , Humans
7.
Trends Biochem Sci ; 47(9): 725-727, 2022 09.
Article in English | MEDLINE | ID: mdl-35606213

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has created unprecedented obstacles for new investigators to traverse. The pandemic's impact exacerbates inequities for groups historically excluded from science. We provide recommendations to support junior faculty, including women and faculty from groups historically excluded from science, in establishing laboratories during the pandemic and foreseeable future.


Subject(s)
COVID-19 , Pandemics , Female , Humans , Laboratories
8.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34873055

ABSTRACT

Endothelial dysfunction is associated with vascular disease and results in disruption of endothelial barrier function and increased sensitivity to apoptosis. Currently, there are limited treatments for improving endothelial dysfunction. Activated protein C (aPC), a promising therapeutic, signals via protease-activated receptor-1 (PAR1) and mediates several cytoprotective responses, including endothelial barrier stabilization and anti-apoptotic responses. We showed that aPC-activated PAR1 signals preferentially via ß-arrestin-2 (ß-arr2) and dishevelled-2 (Dvl2) scaffolds rather than G proteins to promote Rac1 activation and barrier protection. However, the signaling pathways utilized by aPC/PAR1 to mediate anti-apoptotic activities are not known. aPC/PAR1 cytoprotective responses also require coreceptors; however, it is not clear how coreceptors impact different aPC/PAR1 signaling pathways to drive distinct cytoprotective responses. Here, we define a ß-arr2-mediated sphingosine kinase-1 (SphK1)-sphingosine-1-phosphate receptor-1 (S1PR1)-Akt signaling axis that confers aPC/PAR1-mediated protection against cell death. Using human cultured endothelial cells, we found that endogenous PAR1 and S1PR1 coexist in caveolin-1 (Cav1)-rich microdomains and that S1PR1 coassociation with Cav1 is increased by aPC activation of PAR1. Our study further shows that aPC stimulates ß-arr2-dependent SphK1 activation independent of Dvl2 and is required for transactivation of S1PR1-Akt signaling and protection against cell death. While aPC/PAR1-induced, extracellular signal-regulated kinase 1/2 (ERK1/2) activation is also dependent on ß-arr2, neither SphK1 nor S1PR1 are integrated into the ERK1/2 pathway. Finally, aPC activation of PAR1-ß-arr2-mediated protection against apoptosis is dependent on Cav1, the principal structural protein of endothelial caveolae. These studies reveal that different aPC/PAR1 cytoprotective responses are mediated by discrete, ß-arr2-driven signaling pathways in caveolae.


Subject(s)
Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein C/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptor, PAR-1/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , beta-Arrestin 2/metabolism , Anilides/pharmacology , Apoptosis/physiology , Endothelial Cells/physiology , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Lactones/pharmacology , Methanol/pharmacology , Organophosphonates/pharmacology , Phosphotransferases (Alcohol Group Acceptor)/genetics , Platelet Aggregation Inhibitors/pharmacology , Protein C/genetics , Proto-Oncogene Proteins c-akt/genetics , Pyridines/pharmacology , Pyrrolidines/pharmacology , Receptor, PAR-1/genetics , Sphingosine-1-Phosphate Receptors/genetics , Sulfones/pharmacology , beta-Arrestin 2/genetics
9.
Sci Rep ; 10(1): 13063, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32747664

ABSTRACT

The mechanisms mediating suppression of reproduction in response to decreased nutrient availability remain undefined, with studies suggesting regulation occurs within the hypothalamus, pituitary, or gonads. By manipulating glucose utilization and GLUT1 expression in a pituitary gonadotrope cell model and in primary gonadotropes, we show GLUT1-dependent stimulation of glycolysis, but not mitochondrial respiration, by the reproductive neuropeptide GnRH. GnRH stimulation increases gonadotrope GLUT1 expression and translocation to the extracellular membrane. Maximal secretion of the gonadotropin Luteinizing Hormone is supported by GLUT1 expression and activity, and GnRH-induced glycolysis is recapitulated in primary gonadotropes. GLUT1 expression increases in vivo during the GnRH-induced ovulatory LH surge and correlates with GnRHR. We conclude that the gonadotropes of the anterior pituitary sense glucose availability and integrate this status with input from the hypothalamus via GnRH receptor signaling to regulate reproductive hormone synthesis and secretion.


Subject(s)
Glucose Transporter Type 1/metabolism , Glycolysis , Gonadotrophs/metabolism , Gonadotropin-Releasing Hormone/pharmacology , Luteinizing Hormone/metabolism , Animals , Cells, Cultured , Female , Glucose/metabolism , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, LHRH/metabolism
10.
J Diabetes Res ; 2020: 4826704, 2020.
Article in English | MEDLINE | ID: mdl-32377521

ABSTRACT

PURPOSE: En Balance, a culturally sensitive diabetes education program, improves glycemic control in Hispanics with type 2 diabetes. The program emphasized diet, physical activity, and other factors important for glycemic control. However, the individual contributions of these education factors are unclear. The purpose of this study is to assess the contribution of physical activity to the success of En Balance in improving the health of Mexican Americans with type 2 diabetes. METHODS: A retrospective study was conducted with plasma samples collected pre- and post-3-month study. Samples from 58 (18 males and 40 females) Hispanic subjects with type 2 diabetes were analyzed for the concentration of kynurenines, known to decrease in response to exercise. After three months, health outcomes for the active group (decreased kynurenines) and the rest of the cohort were evaluated by paired Wilcoxon signed-rank test. RESULTS: Half of the subjects had increased kynurenine levels at the end of the educational program. We found that the subjects in the active group with decreased kynurenine concentrations displayed statistically greater improvements in fasting blood glucose, A1C, cholesterol, and triglycerides despite weight loss being higher in the group with increased kynurenine concentrations. CONCLUSIONS: En Balance participants with decreased kynurenine levels had significantly improved glycemic control. These data suggest that physical activity significantly contributes to the success of the En Balance education program. This analysis indicates that diabetes public health educators should emphasize the benefit of physical activity on glycemic control even in the absence of major weight loss.


Subject(s)
Blood Glucose/analysis , Diet , Exercise , Healthy Lifestyle , Hispanic or Latino , Patient Education as Topic , Adult , Aged , Diabetes Mellitus, Type 2/blood , Female , Glycated Hemoglobin/analysis , Humans , Male , Middle Aged , Retrospective Studies
11.
Cell Metab ; 32(1): 44-55.e6, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32402267

ABSTRACT

Age is a non-modifiable risk factor for the inflammation that underlies age-associated diseases; thus, anti-inflammaging drugs hold promise for increasing health span. Cytokine profiling and bioinformatic analyses showed that Th17 cytokine production differentiates CD4+ T cells from lean, normoglycemic older and younger subjects, and mimics a diabetes-associated Th17 profile. T cells from older compared to younger subjects also had defects in autophagy and mitochondrial bioenergetics that associate with redox imbalance. Metformin ameliorated the Th17 inflammaging profile by increasing autophagy and improving mitochondrial bioenergetics. By contrast, autophagy-targeting siRNA disrupted redox balance in T cells from young subjects and activated the Th17 profile by activating the Th17 master regulator, STAT3, which in turn bound IL-17A and F promoters. Mitophagy-targeting siRNA failed to activate the Th17 profile. We conclude that metformin improves autophagy and mitochondrial function largely in parallel to ameliorate a newly defined inflammaging profile that echoes inflammation in diabetes.


Subject(s)
Aging/drug effects , Autophagy/drug effects , Hypoglycemic Agents/pharmacology , Inflammation/metabolism , Metformin/pharmacology , Mitochondria/drug effects , Adult , Aging/metabolism , Humans , Middle Aged , Mitochondria/metabolism
12.
Endocrinology ; 160(11): 2543-2555, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31504396

ABSTRACT

A defining characteristic of the hypothalamus-pituitary-gonad reproductive endocrine axis is the episodic secretion of the pituitary gonadotropin hormones LH and FSH by the anterior pituitary gonadotropes. Hormone secretion is dictated by pulsatile stimulation, with GnRH released by hypothalamic neurons that bind and activate the G protein-coupled GnRH receptor expressed by gonadotropes. Hormone secretion and synthesis of gonadotropins are influenced by the amplitude and frequency of GnRH stimulation; variation in either affects the proportion of LH and FSH secreted and the differential regulation of hormone subunit gene expression. Therefore, proper decoding of GnRH signals is essential for appropriate gonadotropin synthesis and secretion. The GnRH receptor robustly activates downstream signaling cascades to facilitate exocytosis and stimulate gene expression and protein synthesis. It is necessary to rapidly quench signaling to preserve sensitivity and adaptability to changing pulse patterns. Reactive oxygen species (ROS) generated by receptor-activated oxidases fulfill the role of rapid signaling intermediates that facilitate robust and transient signaling. However, excess ROS can be detrimental and, unchecked, can confuse signal interpretation. We demonstrate that sulfiredoxin (SRXN1), an ATP-dependent reductase, is essential for normal responses to GnRH receptor signaling and plays a central role in resolution of ROS induced by GnRH stimulation. SRXN1 expression is mitogen-activated protein kinase dependent, and knockdown reduces Lhb and Fshb glycoprotein hormone subunit mRNA and promoter activity. Loss of SRXN1 leads to increased basal and GnRH-stimulated ROS levels. We conclude that SRXN1 is essential for normal responses to GnRH stimulation and plays an important role in ROS management.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Oxidoreductases Acting on Sulfur Group Donors/metabolism , Peroxiredoxins/metabolism , Animals , Cell Line , MAP Kinase Signaling System , Mice , NADPH Oxidases/metabolism , Oxidation-Reduction
13.
Cell Metab ; 30(3): 447-461.e5, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31378464

ABSTRACT

Mechanisms that regulate metabolites and downstream energy generation are key determinants of T cell cytokine production, but the processes underlying the Th17 profile that predicts the metabolic status of people with obesity are untested. Th17 function requires fatty acid uptake, and our new data show that blockade of CPT1A inhibits Th17-associated cytokine production by cells from people with type 2 diabetes (T2D). A low CACT:CPT1A ratio in immune cells from T2D subjects indicates altered mitochondrial function and coincides with the preference of these cells to generate ATP through glycolysis rather than fatty acid oxidation. However, glycolysis was not critical for Th17 cytokines. Instead, ß oxidation blockade or CACT knockdown in T cells from lean subjects to mimic characteristics of T2D causes cells to utilize 16C-fatty acylcarnitine to support Th17 cytokines. These data show long-chain acylcarnitine combines with compromised ß oxidation to promote disease-predictive inflammation in human T2D.


Subject(s)
Diabetes Mellitus, Type 2/metabolism , Fatty Acids/metabolism , Lymphocyte Activation/immunology , Th17 Cells/immunology , Adult , Aged , Carnitine/analogs & derivatives , Carnitine/metabolism , Carnitine O-Palmitoyltransferase/genetics , Cells, Cultured , Cross-Sectional Studies , Cytokines/metabolism , Female , Gene Knockdown Techniques , Glycolysis/genetics , Humans , Inflammation/metabolism , Male , Membrane Transport Proteins/genetics , Middle Aged , Obesity/metabolism , Oxidation-Reduction , Transfection , Young Adult
14.
Endocrinology ; 160(8): 1999-2014, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31188427

ABSTRACT

Gonadotropin secretion, which is elicited by GnRH stimulation of the anterior pituitary gonadotropes, is a critical feature of reproductive control and the maintenance of fertility. In addition, activation of the GnRH receptor (GnRHR) regulates transcription and translation of multiple factors that regulate the signaling response and synthesis of gonadotropins. GnRH stimulation results in a broad redistribution of mRNA between active and inactive polyribosomes within the cell, but the mechanism of redistribution is not known. The RNA-binding protein embryonic lethal, abnormal vision, Drosophila-like 1 (ELAVL1) binds to AU-rich elements in mRNA and is one of the most abundant mRNA-binding proteins in eukaryotic cells. It is known to serve as a core component of RNA-binding complexes that direct the fate of mRNA. In LßT2 gonadotropes, we showed that ELAVL1 binds to multiple mRNAs encoding factors that are crucial for gonadotropin synthesis and release. Association with some mRNAs is GnRH sensitive but does not correlate with abundance of binding. We also showed MAPK-dependent changes in intracellular localization of ELAVL1 in response to GnRH stimulation. Knockdown of ELAVL1 gene expression resulted in reduced Lhb and Gnrhr mRNA levels, reduced cell surface expression of GnRHR, and reduced LH secretion in response to GnRH stimulation. Overall, these observations not only support the role of ELAVL1 in GnRHR-mediated regulation of gene expression and LH secretion but also indicate that other factors may contribute to the precise fate of mRNA in response to GnRH stimulation of gonadotropes.


Subject(s)
ELAV-Like Protein 1/physiology , Gonadotropin-Releasing Hormone/pharmacology , Receptors, LHRH/genetics , Active Transport, Cell Nucleus , Animals , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/physiology , Female , Gene Expression Regulation , Luteinizing Hormone/metabolism , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism
15.
PLoS One ; 12(5): e0176793, 2017.
Article in English | MEDLINE | ID: mdl-28463985

ABSTRACT

Palmitic acid (PA) and other saturated fatty acids are known to stimulate pro-inflammatory responses in human immune cells via Toll-like receptor 4 (TLR4). However, the molecular mechanism responsible for fatty acid stimulation of TLR4 remains unknown. Here, we demonstrate that PA functions as a ligand for TLR4 on human monocyte derived dendritic cells (MoDCs). Hydrophobicity protein modeling indicated PA can associate with the hydrophobic binding pocket of TLR4 adaptor protein MD-2. Isothermal titration calorimetry quantified heat absorption that occurred during PA titration into TLR4/MD2, indicating that PA binds to TLR4/MD2. Treatment of human MoDCs with PA resulted in endocytosis of TLR4, further supporting the function of PA as a TLR4 agonist. In addition, PA stimulated DC maturation and activation based on the upregulation of DC costimulatory factors CD86 and CD83. Further experiments showed that PA induced TLR4 dependent secretion of the pro-inflammatory cytokine IL-1ß. Lastly, our experimental data show that PA stimulation of NF-κB canonical pathway activation is regulated by TLR4 signaling and that reactive oxygen species may be important in upregulating this pro-inflammatory response. Our experiments demonstrate for the first time that PA activation of TLR4 occurs in response to direct molecular interactions between PA and MD-2. In summary, our findings suggest a likely molecular mechanism for PA induction of pro-inflammatory immune responses in human dendritic cells expressing TLR4.


Subject(s)
Dendritic Cells/immunology , Interleukin-1beta/metabolism , Palmitic Acid/metabolism , Toll-Like Receptor 4/metabolism , Antigens, CD/metabolism , Antigens, CD1/metabolism , B7-2 Antigen/metabolism , Binding Sites , Caspase 1/metabolism , Cells, Cultured , Dendritic Cells/cytology , Dose-Response Relationship, Drug , HeLa Cells , Humans , Hydrophobic and Hydrophilic Interactions , Immunoglobulins/metabolism , Immunologic Factors/administration & dosage , Lymphocyte Antigen 96/metabolism , Membrane Glycoproteins/metabolism , Molecular Docking Simulation , NF-kappa B/metabolism , Palmitic Acid/administration & dosage , Reactive Oxygen Species/metabolism , Recombinant Proteins/metabolism , CD83 Antigen
16.
PLoS One ; 12(2): e0170975, 2017.
Article in English | MEDLINE | ID: mdl-28178278

ABSTRACT

Numerous studies show that mitochondrial energy generation determines the effectiveness of immune responses. Furthermore, changes in mitochondrial function may regulate lymphocyte function in inflammatory diseases like type 2 diabetes. Analysis of lymphocyte mitochondrial function has been facilitated by introduction of 96-well format extracellular flux (XF96) analyzers, but the technology remains imperfect for analysis of human lymphocytes. Limitations in XF technology include the lack of practical protocols for analysis of archived human cells, and inadequate data analysis tools that require manual quality checks. Current analysis tools for XF outcomes are also unable to automatically assess data quality and delete untenable data from the relatively high number of biological replicates needed to power complex human cell studies. The objectives of work presented herein are to test the impact of common cellular manipulations on XF outcomes, and to develop and validate a new automated tool that objectively analyzes a virtually unlimited number of samples to quantitate mitochondrial function in immune cells. We present significant improvements on previous XF analyses of primary human cells that will be absolutely essential to test the prediction that changes in immune cell mitochondrial function and fuel sources support immune dysfunction in chronic inflammatory diseases like type 2 diabetes.


Subject(s)
Energy Metabolism , Immunity , Mitochondria/metabolism , Algorithms , Biomarkers , Diabetes Mellitus, Type 1/immunology , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/immunology , Diabetes Mellitus, Type 2/metabolism , Extracellular Space/metabolism , Humans , Lymphocytes/immunology , Lymphocytes/metabolism , Metabolome , Metabolomics/methods , Mitochondria/immunology , Oxygen Consumption
17.
Cell Mol Life Sci ; 74(2): 231-243, 2017 01.
Article in English | MEDLINE | ID: mdl-27491296

ABSTRACT

Chronic inflammation drives pathologies associated with type 2 diabetes (T2D) and breast cancer. Obesity-driven inflammation may explain increased risk and mortality of breast cancer with T2D reported in the epidemiology literature. Therapeutic approaches to target inflammation in both T2D and cancer have so far fallen short of the expected improvements in disease pathogenesis or outcomes. The targeting of epigenetic regulators of cytokine transcription and cytokine signaling offers one promising, untapped approach to treating diseases driven by inflammation. Recent work has deeply implicated the Bromodomain and Extra-Terminal domain (BET) proteins, which are acetylated histone "readers", in epigenetic regulation of inflammation. This review focuses on inflammation associated with T2D and breast cancer, and the possibility of targeting BET proteins as an approach to regulating inflammation in the clinic. Understanding inflammation in the context of BET protein regulation may provide a basis for designing promising therapeutics for T2D and breast cancer.


Subject(s)
Breast Neoplasms/genetics , Diabetes Mellitus, Type 2/genetics , Epigenesis, Genetic , Inflammation/genetics , Nuclear Proteins/metabolism , Female , Humans , Obesity/genetics
19.
Clin Med Insights Womens Health ; 9(Suppl 1): 57-61, 2016.
Article in English | MEDLINE | ID: mdl-27441007

ABSTRACT

African-American women, a historically understudied and underserved group, have increased risk for triple-negative breast cancer and obesity-associated disease. Obesity-associated metabolic diseases share a common link of low grade chronic inflammation, but not all obese women have metabolic disturbances or are inflamed. One goal of our ongoing research is to identify blood biomarkers that can predict increased risk of breast cancer in women who have obesity or metabolic dysfunction. However, vulnerable populations that stand to benefit most from advances in biomedical research are also underrepresented in research studies. The development of effective, novel approaches for cancer prevention and treatment will require significant basic medical research effort to establish the necessary evidence base in multiple populations. Work with vulnerable human subjects at a safety net hospital enabled us to comment on potential obstacles to obtaining serological and tissue specimens from African-American women. Here, we report some unexpected barriers to participation in our ongoing research study that might inform future efforts.

SELECTION OF CITATIONS
SEARCH DETAIL
...