Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cell Rep ; 39(13): 111018, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35767959

ABSTRACT

Disruption of circadian glucocorticoid oscillations in Cushing's disease and chronic stress results in obesity and adipocyte hypertrophy, which is believed to be a main source of the harmful effects of obesity. Here, we recapitulate stress due to jet lag or work-life imbalances by flattening glucocorticoid oscillations in mice. Within 3 days, mice achieve a metabolic state with persistently high insulin, but surprisingly low glucose and fatty acids in the bloodstream, that precedes a more than 2-fold increase in brown and white adipose tissue mass within 3 weeks. Transcriptomic and Cd36-knockout mouse analyses show that hyperinsulinemia-mediated de novo fatty acid synthesis and Cd36-mediated fatty acid uptake drive fat mass increases. Intriguingly, this mechanism by which glucocorticoid flattening causes acute hyperinsulinemia and adipocyte hypertrophy is unexpectedly beneficial in preventing high levels of circulating fatty acids and glucose for weeks, thus serving as a protective response to preserve metabolic health during chronic stress.


Subject(s)
Glucocorticoids , Hyperinsulinism , Adipocytes/metabolism , Animals , Fatty Acids/metabolism , Glucocorticoids/pharmacology , Glucose/metabolism , Hyperinsulinism/metabolism , Hypertrophy/metabolism , Mice , Obesity/metabolism
2.
Hepatology ; 75(1): 154-169, 2022 01.
Article in English | MEDLINE | ID: mdl-34433228

ABSTRACT

BACKGROUND AND AIMS: Thioesterase superfamily member 2 (Them2) is highly expressed in liver and oxidative tissues, where it hydrolyzes long-chain fatty acyl-CoA esters to free fatty acids and CoA. Although mice globally lacking Them2 (Them2-/- ) are protected against diet-induced obesity, hepatic steatosis (HS), and insulin resistance (IR), liver-specific Them2-/- mice remain susceptible. The aim of this study was to test whether Them2 activity in extrahepatic oxidative tissues is a primary determinant of HS and IR. APPROACH AND RESULTS: Upon observing IR and up-regulation of Them2 in skeletal, but not cardiac, muscle of high-fat-diet (HFD)-fed wild-type compared to Them2-/- mice, we created mice with Them2 specifically deleted in skeletal (S-Them2-/- ) and cardiac muscle (C-Them2-/- ), as well as in adipose tissue (A-Them2-/- ). When fed an HFD, S-Them2-/- , but not C-Them2-/- or A-Them2-/- , mice exhibited reduced weight gain and improved glucose homeostasis and insulin sensitivity. Reconstitution of Them2 expression in skeletal muscle of global Them2-/- mice, using adeno-associated virus, was sufficient to restore excess weight gain. Increased rates of fatty acid oxidation in skeletal muscle of S-Them2-/- mice contributed to protection from HFD-induced HS by increasing VLDL triglyceride secretion rates in response to greater demand. Increases in insulin sensitivity were further attributable to alterations in production of skeletal muscle metabolites, including short-chain fatty acids, branched-chain amino acids, and pentose phosphate pathway intermediates, as well as in expression of myokines that modulate insulin responsiveness. CONCLUSIONS: These results reveal a key role for skeletal muscle Them2 in the pathogenesis of HS and IR and implicate it as a target in the management of NAFLD.


Subject(s)
Insulin Resistance/genetics , Lipid Metabolism/genetics , Muscle, Skeletal/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Thiolester Hydrolases/metabolism , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Humans , Male , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Oxidation-Reduction , Thiolester Hydrolases/genetics , Up-Regulation
3.
Nat Commun ; 12(1): 3493, 2021 06 09.
Article in English | MEDLINE | ID: mdl-34108467

ABSTRACT

In brown adipose tissue, thermogenesis is suppressed by thioesterase superfamily member 1 (Them1), a long chain fatty acyl-CoA thioesterase. Them1 is highly upregulated by cold ambient temperature, where it reduces fatty acid availability and limits thermogenesis. Here, we show that Them1 regulates metabolism by undergoing conformational changes in response to ß-adrenergic stimulation that alter Them1 intracellular distribution. Them1 forms metabolically active puncta near lipid droplets and mitochondria. Upon stimulation, Them1 is phosphorylated at the N-terminus, inhibiting puncta formation and activity and resulting in a diffuse intracellular localization. We show by correlative light and electron microscopy that Them1 puncta are biomolecular condensates that are inhibited by phosphorylation. Thus, Them1 forms intracellular biomolecular condensates that limit fatty acid oxidation and suppress thermogenesis. During a period of energy demand, the condensates are disrupted by phosphorylation to allow for maximal thermogenesis. The stimulus-coupled reorganization of Them1 provides fine-tuning of thermogenesis and energy expenditure.


Subject(s)
Energy Metabolism , Palmitoyl-CoA Hydrolase/metabolism , Adipose Tissue, Brown/metabolism , Adrenergic Agonists/pharmacology , Amino Acid Sequence , Animals , Energy Metabolism/drug effects , Fatty Acids/metabolism , Intracellular Space/metabolism , Lipid Droplets/metabolism , Mice , Mitochondria/metabolism , Oxidation-Reduction , Palmitoyl-CoA Hydrolase/chemistry , Palmitoyl-CoA Hydrolase/genetics , Phosphorylation/drug effects , Protein Aggregates , Serine/metabolism , Thermogenesis/drug effects
4.
Cell Metab ; 31(3): 592-604.e9, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32084379

ABSTRACT

Recent studies suggest that a key mechanism whereby the gut microbiome influences energy balance and glucose homeostasis is through the recruitment of brown and beige adipocytes, primary mediators of the adaptive thermogenic response. To test this, we assessed energy expenditure and glucose metabolism in two complementary mouse models of gut microbial deficiency, which were exposed to a broad range of thermal and dietary stresses. Neither ablation of the gut microbiome, nor the substantial microbial perturbations induced by cold ambient temperatures, influenced energy expenditure during cold exposure or high-fat feeding. Nevertheless, we demonstrated a critical role for gut microbial metabolism in maintaining euglycemia through the production of amino acid metabolites that optimized hepatic TCA (tricarboxylic acid) cycle fluxes in support of gluconeogenesis. These results distinguish the dispensability of the gut microbiome for the regulation of energy expenditure from its critical contribution to the maintenance of glucose homeostasis.


Subject(s)
Gastrointestinal Microbiome , Glucose/metabolism , Homeostasis , Thermogenesis/physiology , Animals , Cold Temperature , Diet , Gluconeogenesis , Liver/metabolism , Male , Mice, Inbred C57BL
5.
Cell ; 177(6): 1536-1552.e23, 2019 05 30.
Article in English | MEDLINE | ID: mdl-31150623

ABSTRACT

Ectopic lipid deposition and altered mitochondrial dynamics contribute to the development of obesity and insulin resistance. However, the mechanistic link between these processes remained unclear. Here we demonstrate that the C16:0 sphingolipid synthesizing ceramide synthases, CerS5 and CerS6, affect distinct sphingolipid pools and that abrogation of CerS6 but not of CerS5 protects from obesity and insulin resistance. We identify proteins that specifically interact with C16:0 sphingolipids derived from CerS5 or CerS6. Here, only CerS6-derived C16:0 sphingolipids bind the mitochondrial fission factor (Mff). CerS6 and Mff deficiency protect from fatty acid-induced mitochondrial fragmentation in vitro, and the two proteins genetically interact in vivo in obesity-induced mitochondrial fragmentation and development of insulin resistance. Our experiments reveal an unprecedented specificity of sphingolipid signaling depending on specific synthesizing enzymes, provide a mechanistic link between hepatic lipid deposition and mitochondrial fragmentation in obesity, and define the CerS6-derived sphingolipid/Mff interaction as a therapeutic target for metabolic diseases.


Subject(s)
Membrane Proteins/metabolism , Obesity/metabolism , Sphingolipids/metabolism , Sphingosine N-Acyltransferase/metabolism , Animals , Apoptosis , Cell Line , HeLa Cells , Humans , Insulin Resistance/physiology , Liver/metabolism , Male , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/physiology , Mitochondrial Proteins/metabolism , Obesity/physiopathology , Sphingolipids/physiology , Sphingosine N-Acyltransferase/physiology
9.
Am J Physiol Gastrointest Liver Physiol ; 313(1): G50-G61, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-28385694

ABSTRACT

Mice fed a methionine- and choline-deficient (MCD) diet develop steatohepatitis that recapitulates key features of nonalcoholic steatohepatitis (NASH) in humans. Phosphatidylcholine is the most abundant phospholipid in the surfactant monolayer that coats and stabilizes lipid droplets within cells, and choline is required for its major biosynthetic pathway. Phosphatidylcholine-transfer protein (PC-TP), which exchanges phosphatidylcholines among membranes, is enriched in hepatocytes. PC-TP also regulates fatty acid metabolism through interactions with thioesterase superfamily member 2. We investigated the contribution of PC-TP to steatohepatitis induced by the MCD diet. Pctp-/- and wild-type control mice were fed the MCD diet for 5 wk and were then euthanized for histopathologic and biochemical analyses, as well as determinations of mRNA and protein expression. Whereas all mice developed steatohepatitis, plasma alanine aminotransferase and aspartate aminotransferase activities were only elevated in wild-type mice, indicating that Pctp-/- mice were protected from MCD diet-induced hepatocellular injury. Reduced hepatotoxicity due to the MCD diet in the absence of PC-TP expression was further evidenced by decreased activation of c-Jun and reduced plasma concentrations of fibroblast growth factor 21. Despite similar total hepatic concentrations of phosphatidylcholines and other lipids, the relative abundance of microvesicular lipid droplets within hepatocytes was reduced in Pctp-/- mice. Considering that the formation of larger lipid droplets may serve to protect against lipotoxicity in NASH, our findings suggest a pathogenic role for PC-TP that could be targeted in the management of this condition.NEW & NOTEWORTHY Phosphatidylcholine-transfer protein (PC-TP) is a highly specific phosphatidylcholine-binding protein that we previously showed to regulate hepatocellular nutrient metabolism through its interacting partner thioesterase superfamily member 2 (Them2). This study identifies a pathogenic role for PC-TP, independent of Them2, in the methionine- and choline-deficient diet model of experimental steatohepatitis. Our current observations suggest that PC-TP promotes liver injury by mediating the intermembrane transfer of phosphatidylcholines, thus stabilizing more pathogenic microvesicular lipid droplets.


Subject(s)
Fatty Liver/metabolism , Liver/pathology , Phospholipid Transfer Proteins/metabolism , Animal Feed/analysis , Animals , Choline/administration & dosage , Diet , Gene Expression Regulation/physiology , Lipids , Methionine/administration & dosage , Mice , Mice, Knockout , Phospholipid Transfer Proteins/genetics , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism
10.
Cell Metab ; 20(4): 678-86, 2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25295788

ABSTRACT

Ceramides increase during obesity and promote insulin resistance. Ceramides vary in acyl-chain lengths from C14:0 to C30:0 and are synthesized by six ceramide synthase enzymes (CerS1-6). It remains unresolved whether obesity-associated alterations of specific CerSs and their defined acyl-chain length ceramides contribute to the manifestation of metabolic diseases. Here we reveal that CERS6 mRNA expression and C16:0 ceramides are elevated in adipose tissue of obese humans, and increased CERS6 expression correlates with insulin resistance. Conversely, CerS6-deficient (CerS6(Δ/Δ)) mice exhibit reduced C16:0 ceramides and are protected from high-fat-diet-induced obesity and glucose intolerance. CerS6 deletion increases energy expenditure and improves glucose tolerance, not only in CerS6(Δ/Δ) mice, but also in brown adipose tissue- (CerS6(ΔBAT)) and liver-specific (CerS6(ΔLIVER)) CerS6 knockout mice. CerS6 deficiency increases lipid utilization in BAT and liver. These experiments highlight CerS6 inhibition as a specific approach for the treatment of obesity and type 2 diabetes mellitus, circumventing the side effects of global ceramide synthesis inhibition.


Subject(s)
Ceramides/metabolism , Glucose Intolerance , Sphingosine N-Acyltransferase/metabolism , Adipose Tissue, Brown/metabolism , Animals , Body Mass Index , Diet, High-Fat , Female , Humans , Lipid Peroxidation , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Obesity/metabolism , Obesity/pathology , PPAR gamma/genetics , PPAR gamma/metabolism , Sphingosine N-Acyltransferase/deficiency , Sphingosine N-Acyltransferase/genetics , Weight Gain
11.
Cell ; 156(3): 495-509, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24462248

ABSTRACT

Maternal metabolic homeostasis exerts long-term effects on the offspring's health outcomes. Here, we demonstrate that maternal high-fat diet (HFD) feeding during lactation predisposes the offspring for obesity and impaired glucose homeostasis in mice, which is associated with an impairment of the hypothalamic melanocortin circuitry. Whereas the number and neuropeptide expression of anorexigenic proopiomelanocortin (POMC) and orexigenic agouti-related peptide (AgRP) neurons, electrophysiological properties of POMC neurons, and posttranslational processing of POMC remain unaffected in response to maternal HFD feeding during lactation, the formation of POMC and AgRP projections to hypothalamic target sites is severely impaired. Abrogating insulin action in POMC neurons of the offspring prevents altered POMC projections to the preautonomic paraventricular nucleus of the hypothalamus (PVH), pancreatic parasympathetic innervation, and impaired glucose-stimulated insulin secretion in response to maternal overnutrition. These experiments reveal a critical timing, when altered maternal metabolism disrupts metabolic homeostasis in the offspring via impairing neuronal projections, and show that abnormal insulin signaling contributes to this effect.


Subject(s)
Diet, High-Fat , Hyperglycemia/metabolism , Hypothalamus/metabolism , Insulin/metabolism , Lactation , Obesity/metabolism , Animals , Axons/metabolism , Female , Male , Metabolic Diseases/metabolism , Mice , Mice, Inbred C57BL , Neurons/metabolism , Pregnancy , Pro-Opiomelanocortin/metabolism , Receptor, Insulin/metabolism , Signal Transduction
12.
Nature ; 494(7435): 111-5, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23389544

ABSTRACT

Insulin resistance represents a hallmark during the development of type 2 diabetes mellitus and in the pathogenesis of obesity-associated disturbances of glucose and lipid metabolism. MicroRNA (miRNA)-dependent post-transcriptional gene silencing has been recognized recently to control gene expression in disease development and progression, including that of insulin-resistant type 2 diabetes. The deregulation of miRNAs miR-143 (ref. 4), miR-181 (ref. 5), and miR-103 and miR-107 (ref. 6) alters hepatic insulin sensitivity. Here we report that the expression of miR-802 is increased in the liver of two obese mouse models and obese human subjects. Inducible transgenic overexpression of miR-802 in mice causes impaired glucose tolerance and attenuates insulin sensitivity, whereas reduction of miR-802 expression improves glucose tolerance and insulin action. We identify Hnf1b (also known as Tcf2) as a target of miR-802-dependent silencing, and show that short hairpin RNA (shRNA)-mediated reduction of Hnf1b in liver causes glucose intolerance, impairs insulin signalling and promotes hepatic gluconeogenesis. In turn, hepatic overexpression of Hnf1b improves insulin sensitivity in Lepr(db/db) mice. Thus, this study defines a critical role for deregulated expression of miR-802 in the development of obesity-associated impairment of glucose metabolism through targeting of Hnf1b, and assigns Hnf1b an unexpected role in the control of hepatic insulin sensitivity.


Subject(s)
Gene Silencing , Glucose/metabolism , Hepatocyte Nuclear Factor 1-beta/deficiency , MicroRNAs/genetics , Obesity/genetics , Animals , Gene Expression Regulation , Gluconeogenesis , Glucose/biosynthesis , Glucose Intolerance/genetics , Glucose Intolerance/metabolism , Hepatocyte Nuclear Factor 1-beta/genetics , Hepatocyte Nuclear Factor 1-beta/metabolism , Humans , Insulin/metabolism , Insulin Resistance/genetics , Liver/metabolism , Mice , MicroRNAs/biosynthesis , Signal Transduction
13.
Biochem J ; 442(3): 723-32, 2012 Mar 15.
Article in English | MEDLINE | ID: mdl-22364283

ABSTRACT

In the present study, we have examined whether IKKß [IκB (inhibitor of nuclear factor κB) kinase ß] plays a role in feedback inhibition of the insulin signalling cascade. Insulin induces the phosphorylation of IKKß, in vitro and in vivo, and this effect is dependent on intact signalling via PI3K (phosphoinositide 3-kinase), but not PKB (protein kinase B). To test the hypothesis that insulin activates IKKß as a means of negative feedback, we employed a variety of experimental approaches. First, pharmacological inhibition of IKKß via BMS-345541 did not potentiate insulin-induced IRS1 (insulin receptor substrate 1) tyrosine phosphorylation, PKB phosphorylation or 2-deoxyglucose uptake in differentiated 3T3-L1 adipocytes. BMS-345541 did not prevent insulin-induced IRS1 serine phosphorylation on known IKKß target sites. Secondly, adenovirus-mediated overexpression of wild-type IKKß in differentiated 3T3-L1 adipocytes did not suppress insulin-stimulated 2-deoxyglucose uptake, IRS1 tyrosine phosphorylation, IRS1 association with the p85 regulatory subunit of PI3K or PKB phosphorylation. Thirdly, insulin signalling was not potentiated in mouse embryonic fibroblasts lacking IKKß. Finally, insulin treatment of 3T3-L1 adipocytes did not promote the recruitment of IKKß to IRS1, supporting our findings that IKKß, although activated by insulin, does not promote direct serine phosphorylation of IRS1 and does not contribute to the feedback inhibition of the insulin signalling cascade.


Subject(s)
Feedback, Physiological/physiology , I-kappa B Kinase/metabolism , Insulin/metabolism , Signal Transduction , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Insulin Receptor Substrate Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Phosphorylation , Serine/genetics
14.
Diabetes ; 60(4): 1100-10, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21378177

ABSTRACT

OBJECTIVE: The fatty acid translocase and scavenger receptor CD36 is important in the recognition and uptake of lipids. Accordingly, we hypothesized that it plays a role in saturated fatty acid-induced macrophage lipid accumulation and proinflammatory activation. RESEARCH DESIGN AND METHODS: In vitro, the effect of CD36 inhibition and deletion in lipid-induced macrophage inflammation was assessed using the putative CD36 inhibitor, sulfosuccinimidyl oleate (SSO), and bone marrow-derived macrophages from mice with (CD36KO) or without (wild-type) global deletion of CD36. To investigate whether deletion of macrophage CD36 would improve insulin sensitivity in vivo, wild-type mice were transplanted with bone marrow from CD36KO or wild-type mice and then fed a standard or high-fat diet (HFD) for 20 weeks. RESULTS: SSO treatment markedly reduced saturated fatty acid-induced lipid accumulation and inflammation in RAW264.7 macrophages. Mice harboring CD36-specific deletion in hematopoietic-derived cells (HSC CD36KO) fed an HFD displayed improved insulin signaling and reduced macrophage infiltration in adipose tissue compared with wild-type mice, but this did not translate into protection against HFD-induced whole-body insulin resistance. Contrary to our hypothesis and our results using SSO in RAW264.7 macrophages, neither saturated fatty acid-induced lipid accumulation nor inflammation was reduced when comparing CD36KO with wild-type bone marrow-derived macrophages. CONCLUSIONS: Although CD36 does not appear important in saturated fatty acid-induced macrophage lipid accumulation, our study uncovers a novel role for CD36 in the migration of proinflammatory phagocytes to adipose tissue in obesity, with a concomitant improvement in insulin action.


Subject(s)
Adipose Tissue/metabolism , CD36 Antigens/metabolism , Dietary Fats/adverse effects , Insulin/pharmacology , Macrophages/drug effects , Adipose Tissue/drug effects , Animals , Blotting, Western , Bone Marrow Transplantation , CD36 Antigens/genetics , Cell Line , Cell Movement/drug effects , Cell Movement/genetics , Flow Cytometry , Immunohistochemistry , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Palmitic Acid/adverse effects , Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Stearic Acids/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...