Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Nature ; 616(7958): 747-754, 2023 04.
Article in English | MEDLINE | ID: mdl-37046084

ABSTRACT

Chronic liver disease is a major public health burden worldwide1. Although different aetiologies and mechanisms of liver injury exist, progression of chronic liver disease follows a common pathway of liver inflammation, injury and fibrosis2. Here we examined the association between clonal haematopoiesis of indeterminate potential (CHIP) and chronic liver disease in 214,563 individuals from 4 independent cohorts with whole-exome sequencing data (Framingham Heart Study, Atherosclerosis Risk in Communities Study, UK Biobank and Mass General Brigham Biobank). CHIP was associated with an increased risk of prevalent and incident chronic liver disease (odds ratio = 2.01, 95% confidence interval (95% CI) [1.46, 2.79]; P < 0.001). Individuals with CHIP were more likely to demonstrate liver inflammation and fibrosis detectable by magnetic resonance imaging compared to those without CHIP (odds ratio = 1.74, 95% CI [1.16, 2.60]; P = 0.007). To assess potential causality, Mendelian randomization analyses showed that genetic predisposition to CHIP was associated with a greater risk of chronic liver disease (odds ratio = 2.37, 95% CI [1.57, 3.6]; P < 0.001). In a dietary model of non-alcoholic steatohepatitis, mice transplanted with Tet2-deficient haematopoietic cells demonstrated more severe liver inflammation and fibrosis. These effects were mediated by the NLRP3 inflammasome and increased levels of expression of downstream inflammatory cytokines in Tet2-deficient macrophages. In summary, clonal haematopoiesis is associated with an elevated risk of liver inflammation and chronic liver disease progression through an aberrant inflammatory response.


Subject(s)
Clonal Hematopoiesis , Disease Susceptibility , Hepatitis , Liver Cirrhosis , Animals , Mice , Clonal Hematopoiesis/genetics , Hepatitis/genetics , Inflammation/genetics , Liver Cirrhosis/genetics , Non-alcoholic Fatty Liver Disease/genetics , Odds Ratio , Disease Progression
4.
J Hepatol ; 73(2): 241-251, 2020 08.
Article in English | MEDLINE | ID: mdl-32247823

ABSTRACT

BACKGROUND & AIMS: MRI-based corrected T1 (cT1) is a non-invasive method to grade the severity of steatohepatitis and liver fibrosis. We aimed to identify genetic variants influencing liver cT1 and use genetics to understand mechanisms underlying liver fibroinflammatory disease and its link with other metabolic traits and diseases. METHODS: First, we performed a genome-wide association study (GWAS) in 14,440 Europeans, with liver cT1 measures, from the UK Biobank. Second, we explored the effects of the cT1 variants on liver blood tests, and a range of metabolic traits and diseases. Third, we used Mendelian randomisation to test the causal effects of 24 predominantly metabolic traits on liver cT1 measures. RESULTS: We identified 6 independent genetic variants associated with liver cT1 that reached the GWAS significance threshold (p <5×10-8). Four of the variants (rs759359281 in SLC30A10, rs13107325 in SLC39A8, rs58542926 in TM6SF2, rs738409 in PNPLA3) were also associated with elevated aminotransferases and had variable effects on liver fat and other metabolic traits. Insulin resistance, type 2 diabetes, non-alcoholic fatty liver and body mass index were causally associated with elevated cT1, whilst favourable adiposity (instrumented by variants associated with higher adiposity but lower risk of cardiometabolic disease and lower liver fat) was found to be protective. CONCLUSION: The association between 2 metal ion transporters and cT1 indicates an important new mechanism in steatohepatitis. Future studies are needed to determine whether interventions targeting the identified transporters might prevent liver disease in at-risk individuals. LAY SUMMARY: We estimated levels of liver inflammation and scarring based on magnetic resonance imaging of 14,440 UK Biobank participants. We performed a genetic study and identified variations in 6 genes associated with levels of liver inflammation and scarring. Participants with variations in 4 of these genes also had higher levels of markers of liver cell injury in blood samples, further validating their role in liver health. Two identified genes are involved in the transport of metal ions in our body. Further investigation of these variations may lead to better detection, assessment, and/or treatment of liver inflammation and scarring.


Subject(s)
Cation Transport Proteins/genetics , Fatty Liver/genetics , Liver Cirrhosis/genetics , Liver , Metabolic Syndrome/genetics , Europe/epidemiology , Fatty Liver/epidemiology , Female , Genetic Predisposition to Disease , Genetic Variation , Genome-Wide Association Study , Humans , Liver/diagnostic imaging , Liver/pathology , Liver Cirrhosis/epidemiology , Magnetic Resonance Imaging/methods , Male , Mendelian Randomization Analysis , Metabolic Syndrome/epidemiology , Middle Aged , Polymorphism, Single Nucleotide , Protective Factors , Risk Assessment/methods
5.
J Magn Reson Imaging ; 52(3): 807-820, 2020 09.
Article in English | MEDLINE | ID: mdl-32147892

ABSTRACT

BACKGROUND: Magnetic resonance cholangiopancreatography (MRCP) is an important tool for noninvasive imaging of biliary disease, however, its assessment is currently subjective, resulting in the need for objective biomarkers. PURPOSE: To investigate the accuracy, scan/rescan repeatability, and cross-scanner reproducibility of a novel quantitative MRCP tool on phantoms and in vivo. Additionally, to report normative ranges derived from the healthy cohort for duct measurements and tree-level summary metrics. STUDY TYPE: Prospective. PHANTOMS/SUBJECTS: Phantoms: two bespoke designs, one with varying tube-width, curvature, and orientation, and one exhibiting a complex structure based on a real biliary tree. Subjects Twenty healthy volunteers, 10 patients with biliary disease, and 10 with nonbiliary liver disease. SEQUENCE/FIELD STRENGTH: MRCP data were acquired using heavily T2 -weighted 3D multishot fast/turbo spin echo acquisitions at 1.5T and 3T. ASSESSMENT: Digital instances of the phantoms were synthesized with varying resolution and signal-to-noise ratio. Physical 3D-printed phantoms were scanned across six scanners (two field strengths for each of three manufacturers). Human subjects were imaged on four scanners (two fieldstrengths for each of two manufacturers). STATISTICAL TESTS: Bland-Altman analysis and repeatability coefficient (RC). RESULTS: Accuracy of the diameter measurement approximated the scanning resolution, with 95% limits of agreement (LoA) from -1.1 to 1.0 mm. Excellent phantom repeatability was observed, with LoA from -0.4 to 0.4 mm. Good reproducibility was observed across the six scanners for both phantoms, with a range of LoA from -1.1 to 0.5 mm. Inter- and intraobserver agreement was high. Quantitative MRCP detected strictures and dilatations in the phantom with 76.6% and 85.9% sensitivity and 100% specificity in both. Patients and healthy volunteers exhibited significant differences in metrics including common bile duct (CBD) maximum diameter (7.6 mm vs. 5.2 mm P = 0.002), and overall biliary tree volume 12.36 mL vs. 4.61 mL, P = 0.0026). DATA CONCLUSION: The results indicate that quantitative MRCP provides accurate, repeatable, and reproducible measurements capable of objectively assessing cholangiopathic change. Evidence Level: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2020;52:807-820.


Subject(s)
Cholangiopancreatography, Magnetic Resonance , Image Processing, Computer-Assisted , Humans , Magnetic Resonance Imaging , Phantoms, Imaging , Prospective Studies , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...