Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Adv ; 9(37): eadj8277, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37703376

ABSTRACT

CRISPR RNA-guided endonucleases have enabled precise editing of DNA. However, options for editing RNA remain limited. Here, we combine sequence-specific RNA cleavage by CRISPR ribonucleases with programmable RNA repair to make precise deletions and insertions in RNA. This work establishes a recombinant RNA technology with immediate applications for the facile engineering of RNA viruses.


Subject(s)
Engineering , RNA Viruses , RNA Viruses/genetics , Technology , Endonucleases/genetics , RNA
2.
bioRxiv ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37292641

ABSTRACT

CRISPR RNA-guided endonucleases have enabled precise editing of DNA. However, options for editing RNA remain limited. Here, we combine sequence-specific RNA cleavage by CRISPR ribonucleases with programmable RNA repair to make precise deletions and insertions in RNA. This work establishes a new recombinant RNA technology with immediate applications for the facile engineering of RNA viruses. One-Sentence Summary: Programmable CRISPR RNA-guided ribonucleases enable recombinant RNA technology.

3.
Nat Commun ; 13(1): 7762, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36522348

ABSTRACT

Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. We show that both Can1 and Can2 nucleases cleave single-stranded RNA, single-stranded DNA, and double-stranded DNA in the presence of cA4. We integrate the Can2 nuclease with type III-A RNA capture and concentration for direct detection of SARS-CoV-2 RNA in nasopharyngeal swabs with 15 fM sensitivity. Collectively, this work demonstrates how type-III CRISPR-based RNA capture and concentration simultaneously increases sensitivity, limits time to result, lowers cost of the assay, eliminates solvents used for RNA extraction, and reduces sample handling.


Subject(s)
COVID-19 , CRISPR-Cas Systems , RNA, Viral , Humans , COVID-19/diagnosis , DNA , Endonucleases/metabolism , RNA, Viral/isolation & purification , SARS-CoV-2 , Thermus thermophilus
4.
Methods ; 205: 1-10, 2022 09.
Article in English | MEDLINE | ID: mdl-35690249

ABSTRACT

Polymerase Chain Reaction (PCR) is the reigning gold standard for molecular diagnostics. However, the SARS-CoV-2 pandemic reveals an urgent need for new diagnostics that provide users with immediate results without complex procedures or sophisticated equipment. These new demands have stimulated a tsunami of innovations that improve turnaround times without compromising the specificity and sensitivity that has established PCR as the paragon of diagnostics. Here we briefly introduce the origins of PCR and isothermal amplification, before turning to the emergence of CRISPR-Cas and Argonaute proteins, which are being coupled to fluorimeters, spectrometers, microfluidic devices, field-effect transistors, and amperometric biosensors, for a new generation of nucleic acid-based diagnostics.


Subject(s)
Argonaute Proteins , CRISPR-Cas Systems , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction , Argonaute Proteins/genetics , CRISPR-Cas Systems/genetics , Humans , Nucleic Acid Amplification Techniques/methods
5.
Res Sq ; 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35475170

ABSTRACT

Type-III CRISPR-Cas systems have recently been adopted for sequence-specific detection of SARS-CoV-2. Here, we make two major advances that simultaneously limit sample handling and significantly enhance the sensitivity of SARS-CoV-2 RNA detection directly from patient samples. First, we repurpose the type III-A CRISPR complex from Thermus thermophilus (TtCsm) for programmable capture and concentration of specific RNAs from complex mixtures. The target bound TtCsm complex primarily generates two cyclic oligoadenylates (i.e., cA3 and cA4) that allosterically activate ancillary nucleases. To improve sensitivity of the diagnostic, we identify and test several ancillary nucleases (i.e., Can1, Can2, and NucC). We show that Can1 and Can2 are activated by both cA3 and cA4, and that different activators trigger changes in the substrate specificity of these nucleases. Finally, we integrate the type III-A CRISPR RNA-guided capture technique with the Can2 nuclease for 90 fM (5x104 copies/ul) detection of SARS-CoV-2 RNA directly from nasopharyngeal swab samples.

SELECTION OF CITATIONS
SEARCH DETAIL