Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Evol Hum Sci ; 6: e24, 2024.
Article in English | MEDLINE | ID: mdl-38689895

ABSTRACT

Globally, human house types are diverse, varying in shape, size, roof type, building materials, arrangement, decoration and many other features. Here we offer the first rigorous, global evaluation of the factors that influence the construction of traditional (vernacular) houses. We apply macroecological approaches to analyse data describing house features from 1900 to 1950 across 1000 societies. Geographic, social and linguistic descriptors for each society were used to test the extent to which key architectural features may be explained by the biophysical environment, social traits, house features of neighbouring societies or cultural history. We find strong evidence that some aspects of the climate shape house architecture, including floor height, wall material and roof shape. Other features, particularly ground plan, appear to also be influenced by social attributes of societies, such as whether a society is nomadic, polygynous or politically complex. Additional variation in all house features was predicted both by the practices of neighouring societies and by a society's language family. Collectively, the findings from our analyses suggest those conditions under which traditional houses offer solutions to architects seeking to reimagine houses in light of warmer, wetter or more variable climates.

2.
PeerJ ; 11: e16163, 2023.
Article in English | MEDLINE | ID: mdl-37810791

ABSTRACT

The microbial fermentation behind sourdough bread is among our oldest technologies, yet there are many opportunities for sourdough science to learn from traditional bakers. We analyzed 16S rRNA sequences in R to assess the bacterial community structure and performance of 40 starters grown from 10 types of flour over 14 days, and identified six distinct stages of succession. At each stage, bacterial taxa correlate with determinants of bread quality including pH, rise, and aromatic profile. Day 1 starter cultures were dominated by microorganisms commonly associated with plants and flour, and by aromas similar to toasted grain/cereal. Bacterial diversity peaked from days 2-6 as taxa shifted from opportunistic/generalist bacteria associated with flour inputs, toward specialized climax bacterial communities (days 10-14) characterized by acid-tolerant taxa and fruity (p < 3.03e-03), sour (p < 1.60e-01), and fermented (p < 1.47e-05) aromas. This collection of traits changes predictably through time, regardless of flour type, highlighting patterns of bacterial constraints and dynamics that are conserved across systems and scales. Yet, while sourdough climax communities exhibit similar markers of maturity (i.e., pH ≤ 4 and enriched in Lactobacillus (mean abundance 48.1%), Pediococcus (mean abundance 22.7%), and/or Gluconobacter (mean abundance 19.1%)), we also detected specific taxa and aromas associated with each type of flour. Our results address important ecological questions about the relationship between community structure and starter performance, and may enable bakers to deliberately select for specific sourdough starter and bread characteristics.


Subject(s)
Bacteria , Flour , Flour/microbiology , RNA, Ribosomal, 16S/genetics , Fermentation , Bacteria/genetics , Lactobacillus/genetics
3.
J Control Release ; 347: 314-329, 2022 07.
Article in English | MEDLINE | ID: mdl-35513208

ABSTRACT

Scleral photocrosslinking is increasingly investigated for treatment of myopia and glaucoma. In this study a computational model was developed to predict crosslinking efficiency of visible/near infrared photosensitizers in the sclera. Photocrosslinking was validated against riboflavin corneal crosslinking experimental studies and subsequently modeled for the sensitizer, methylene blue, administered by retrobulbar injection to the posterior sclera and irradiated with a transpupillary light beam. Optimal ranges were determined for treatment parameters including light intensity, methylene blue concentration, injection volume, and inspired oxygen concentration. Additionally, sensitivity of crosslinking to various parameters was quantified. The most sensitive parameters were oxygen concentration in the injection solution, scleral thickness, and injection reservoir thickness (i.e., injection volume).


Subject(s)
Methylene Blue , Sclera , Collagen , Computer Simulation , Cross-Linking Reagents , Oxygen
4.
Proc Biol Sci ; 289(1968): 20211918, 2022 02 09.
Article in English | MEDLINE | ID: mdl-35135352

ABSTRACT

The evolutionary history of sour taste has been little studied. Through a combination of literature review and trait mapping on the vertebrate phylogenetic tree, we consider the origin of sour taste, potential cases of the loss of sour taste, and those factors that might have favoured changes in the valence of sour taste-from aversive to appealing. We reconstruct sour taste as having evolved in ancient fish. By contrast to other tastes, sour taste does not appear to have been lost in any major vertebrate taxa. For most species, sour taste is aversive. Animals, including humans, that enjoy the sour taste triggered by acidic foods are exceptional. We conclude by considering why sour taste evolved, why it might have persisted as vertebrates made the transition to land and what factors might have favoured the preference for sour-tasting, acidic foods, particularly in hominins, such as humans.


Subject(s)
Taste , Animals , Humans , Phylogeny
5.
Yeast ; 39(1-2): 108-127, 2022 01.
Article in English | MEDLINE | ID: mdl-34687090

ABSTRACT

Insects represent a particularly interesting habitat in which to search for novel yeasts of value to industry. Insect-associated yeasts have the potential to have traits relevant to modern food and beverage production due to insect-yeast interactions, with such traits including diverse carbohydrate metabolisms, high sugar tolerance, and general stress tolerance. Here, we consider the potential value of insect-associated yeasts in the specific context of baking. We isolated 63 yeast strains from 13 species of hymenoptera from the United States, representing 37 yeast species from 14 genera. Screening for the ability to ferment maltose, a sugar important for bread production, resulted in the identification of 13 strains of Candida, Lachancea, and Pichia species. We assessed their ability to leaven dough. All strains produced baked loaves comparable to a commercial baking strain of Saccharomyces cerevisiae. The same 13 strains were also grown under various sugar and salt conditions relevant to osmotic challenges experienced in the manufacturing processes and the production of sweet dough. We show that many of these yeast strains, most notably strains of Lachancea species, grow at a similar or higher rate and population size as commercial baker's yeast. We additionally assessed the comparative phenotypes and genetics of insect-associated S. cerevisiae strains unable to ferment maltose and identified baking-relevant traits, including variations in the HOG1 signaling pathway and diverse carbohydrate metabolisms. Our results suggest that non-conventional yeasts have high potential for baking and, more generally, showcase the success of bioprospecting in insects for identifying yeasts relevant for industrial uses.


Subject(s)
Bread , Saccharomyces cerevisiae , Animals , Fermentation , Insecta , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sugars/metabolism , Yeasts
6.
Environ Sci Technol ; 55(20): 14105-14114, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34606240

ABSTRACT

Microbes that thrive in premise plumbing can have potentially important effects on human health. Yet, how and why plumbing-associated microbial communities vary across broad spatial scales remain undetermined. We characterized the bacterial communities in 496 showerheads collected from across the continental United States. The overall community structure, determined by 16S rRNA gene amplicon sequencing, revealed high levels of bacterial diversity. Although a large fraction of the observed variation in community composition could not be explained, differences in bacterial community composition were associated with water supply (private well water vs public municipal water), water source (groundwater vs surface water), and associated differences in water chemistry (pH and chlorine). Most notably, showerheads in homes supplied with public water had higher abundances of Blastomonas, Mycobacterium, and Porphyrobacter, while Pseudorhodoplanes, Novosphingobium, and Nitrospira were more abundant in those receiving private well water. We conducted shotgun metagenomic analyses on 92 of these samples to assess differences in genomic attributes. Public water-sourced showerheads had communities enriched in genes related to lipid and xenobiotic metabolisms, virulence factors, and antibiotic resistance. In contrast, genes associated with oxidative stress and membrane transporters were over-represented in communities from private well water-sourced showerheads compared to those supplied by public water systems. These results highlight the broad diversity of bacteria found in premise plumbing across the United States and the role of the water source and treatment in shaping the microbial community structure and functional potential.


Subject(s)
Drinking Water , Mycobacterium , Humans , RNA, Ribosomal, 16S/genetics , Sanitary Engineering , United States , Water Microbiology
7.
Ecol Evol ; 11(14): 9856-9863, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34306668

ABSTRACT

Understanding how different taxa respond to global warming is essential for predicting future changes and elaborating strategies to buffer them. Tardigrades are well known for their ability to survive environmental stressors, such as drying and freezing, by undergoing cryptobiosis and rapidly recovering their metabolic function after stressors cease. Determining the extent to which animals that undergo cryptobiosis are affected by environmental warming will help to understand the real magnitude climate change will have on these organisms. Here, we report on the responses of tardigrades within a five-year-long, field-based artificial warming experiment, which consisted of 12 open-top chambers heated to simulate the projected effects of global warming (ranging from 0 to 5.5°C above ambient temperature) in a temperate deciduous forest of North Carolina (USA). To elucidate the effects of warming on the tardigrade community inhabiting the soil litter, three community diversity indices (abundance, species richness, and Shannon diversity) and the abundance of the three most abundant species (Diphascon pingue, Adropion scoticum, and Mesobiotus sp.) were determined. Their relationships with air temperature, soil moisture, and the interaction between air temperature and soil moisture were tested using Bayesian generalized linear mixed models. Despite observed negative effects of warming on other ground invertebrates in previous studies at this site, long-term warming did not affect the abundance, richness, or diversity of tardigrades in this experiment. These results are in line with previous experimental studies, indicating that tardigrades may not be directly affected by ongoing global warming, possibly due to their thermotolerance and cryptobiotic abilities to avoid negative effects of stressful temperatures, and the buffering effect on temperature of the soil litter substrate.

8.
mSystems ; 6(3): e0126920, 2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34156289

ABSTRACT

Understanding variation in host-associated microbial communities is important given the relevance of microbiomes to host physiology and health. Using 560 fecal samples collected from wild chimpanzees (Pan troglodytes) across their range, we assessed how geography, genetics, climate, vegetation, and diet relate to gut microbial community structure (prokaryotes, eukaryotic parasites) at multiple spatial scales. We observed a high degree of regional specificity in the microbiome composition, which was associated with host genetics, available plant foods, and potentially with cultural differences in tool use, which affect diet. Genetic differences drove community composition at large scales, while vegetation and potentially tool use drove within-region differences, likely due to their influence on diet. Unlike industrialized human populations in the United States, where regional differences in the gut microbiome are undetectable, chimpanzee gut microbiomes are far more variable across space, suggesting that technological developments have decoupled humans from their local environments, obscuring regional differences that could have been important during human evolution. IMPORTANCE Gut microbial communities are drivers of primate physiology and health, but the factors that influence the gut microbiome in wild primate populations remain largely undetermined. We report data from a continent-wide survey of wild chimpanzee gut microbiota and highlight the effects of genetics, vegetation, and potentially even tool use at different spatial scales on the chimpanzee gut microbiome, including bacteria, archaea, and eukaryotic parasites. Microbial community dissimilarity was strongly correlated with chimpanzee population genetic dissimilarity, and vegetation composition and consumption of algae, honey, nuts, and termites were potentially associated with additional divergence in microbial communities between sampling sites. Our results suggest that host genetics, geography, and climate play a far stronger role in structuring the gut microbiome in chimpanzees than in humans.

9.
PeerJ ; 9: e11389, 2021.
Article in English | MEDLINE | ID: mdl-34026358

ABSTRACT

The practice of sourdough bread-making is an ancient science that involves the development, maintenance, and use of a diverse and complex starter culture. The sourdough starter culture comes in many different forms and is used in bread-making at both artisanal and commercial scales, in countries all over the world. While there is ample scientific research related to sourdough, there is no standardized approach to using sourdough starters in science or the bread industry; and there are few recommendations on future directions for sourdough research. Our review highlights what is currently known about the microbial ecosystem of sourdough (including microbial succession within the starter culture), methods of maintaining sourdough (analogous to land management) on the path to bread production, and factors that influence the sensory qualities of the final baked product. We present new hypotheses for the successful management of sourdough starters and propose future directions for sourdough research and application to better support and engage the sourdough baking community.

10.
Elife ; 102021 01 26.
Article in English | MEDLINE | ID: mdl-33496265

ABSTRACT

Humans have relied on sourdough starter microbial communities to make leavened bread for thousands of years, but only a small fraction of global sourdough biodiversity has been characterized. Working with a community-scientist network of bread bakers, we determined the microbial diversity of 500 sourdough starters from four continents. In sharp contrast with widespread assumptions, we found little evidence for biogeographic patterns in starter communities. Strong co-occurrence patterns observed in situ and recreated in vitro demonstrate that microbial interactions shape sourdough community structure. Variation in dough rise rates and aromas were largely explained by acetic acid bacteria, a mostly overlooked group of sourdough microbes. Our study reveals the extent of microbial diversity in an ancient fermented food across diverse cultural and geographic backgrounds.


Sourdough bread is an ancient fermented food that has sustained humans around the world for thousands of years. It is made from a sourdough 'starter culture' which is maintained, portioned, and shared among bread bakers around the world. The starter culture contains a community of microbes made up of yeasts and bacteria, which ferment the carbohydrates in flour and produce the carbon dioxide gas that makes the bread dough rise before baking. The different acids and enzymes produced by the microbial culture affect the bread's flavor, texture and shelf life. However, for such a dependable staple, sourdough bread cultures and the mixture of microbes they contain have scarcely been characterized. Previous studies have looked at the composition of starter cultures from regions within Europe. But there has never been a comprehensive study of how the microbial diversity of sourdough starters varies across and between continents. To investigate this, Landis, Oliverio et al. used genetic sequencing to characterize the microbial communities of sourdough starters from the homes of 500 bread bakers in North America, Europe and Australasia. Bread makers often think their bread's unique qualities are due to the local environment of where the sourdough starter was made. However, Landis, Oliverio et al. found that geographical location did not correlate with the diversity of the starter cultures studied. The data revealed that a group of microbes called acetic acid bacteria, which had been overlooked in past research, were relatively common in starter cultures. Moreover, starters with a greater abundance of this group of bacteria produced bread with a strong vinegar aroma and caused dough to rise at a slower rate. This research demonstrates which species of bacteria and yeast are most commonly found in sourdough starters, and suggests geographical location has little influence on the microbial diversity of these cultures. Instead, the diversity of microbes likely depends more on how the starter culture was made and how it is maintained over time.


Subject(s)
Bacteria/metabolism , Bread/microbiology , Food Microbiology , Microbiota , Acetic Acid/metabolism
11.
R Soc Open Sci ; 6(3): 180695, 2019 Mar.
Article in English | MEDLINE | ID: mdl-31031985

ABSTRACT

Human engineering of the outdoors led to the development of the indoor niche, including home construction. However, it is unlikely that domicile construction mechanics are under direct selection for humans. Nonetheless, our preferences within indoor environments are, or once were, consequential to our fitness. The research of human homes does not usually consider human evolution, and, therefore, we are without previous predictions about indoor climate preference. We worked with citizen scientists to collect indoor climate data from homes (n = 37) across the USA. We then compared these data to recent global terrestrial climate data (0.5° grid cells, n = 67 420) using a climate dissimilarity index. We also compared some climate-related physiological parameters (e.g. thermoneutral zone (TNZ)) between humans and a selection of non-human primates. On average, our study homes were most similar in climate to the outdoor conditions of west central Kenya. We found that the indoor climates of our study homes largely matched the TNZ of humans and other primates. Overall, we identified the geographical distribution of the global outdoor climate that is most similar to the interiors of our study homes and summarized study home indoor climate preferences.

12.
mBio ; 9(5)2018 10 30.
Article in English | MEDLINE | ID: mdl-30377276

ABSTRACT

Bacteria within the genus Mycobacterium can be abundant in showerheads, and the inhalation of aerosolized mycobacteria while showering has been implicated as a mode of transmission in nontuberculous mycobacterial (NTM) lung infections. Despite their importance, the diversity, distributions, and environmental predictors of showerhead-associated mycobacteria remain largely unresolved. To address these knowledge gaps, we worked with citizen scientists to collect showerhead biofilm samples and associated water chemistry data from 656 households located across the United States and Europe. Our cultivation-independent analyses revealed that the genus Mycobacterium was consistently the most abundant genus of bacteria detected in residential showerheads, and yet mycobacterial diversity and abundances were highly variable. Mycobacteria were far more abundant, on average, in showerheads receiving municipal water than in those receiving well water and in U.S. households than in European households, patterns that are likely driven by differences in the use of chlorine disinfectants. Moreover, we found that water source, water chemistry, and household location also influenced the prevalence of specific mycobacterial lineages detected in showerheads. We identified geographic regions within the United States where showerheads have particularly high abundances of potentially pathogenic lineages of mycobacteria, and these "hot spots" generally overlapped those regions where NTM lung disease is most prevalent. Together, these results emphasize the public health relevance of mycobacteria in showerhead biofilms. They further demonstrate that mycobacterial distributions in showerhead biofilms are often predictable from household location and water chemistry, knowledge that advances our understanding of NTM transmission dynamics and the development of strategies to reduce exposures to these emerging pathogens.IMPORTANCE Bacteria thrive in showerheads and throughout household water distribution systems. While most of these bacteria are innocuous, some are potential pathogens, including members of the genus Mycobacterium that can cause nontuberculous mycobacterial (NTM) lung infection, an increasing threat to public health. We found that showerheads in households across the United States and Europe often harbor abundant mycobacterial communities that vary in composition depending on geographic location, water chemistry, and water source, with households receiving water treated with chlorine disinfectants having particularly high abundances of certain mycobacteria. The regions in the United States where NTM lung infections are most common were the same regions where pathogenic mycobacteria were most prevalent in showerheads, highlighting the important role of showerheads in the transmission of NTM infections.


Subject(s)
Biofilms/growth & development , Biota , Drinking Water/microbiology , Mycobacterium Infections, Nontuberculous/transmission , Mycobacterium/classification , Mycobacterium/isolation & purification , Drinking Water/chemistry , Europe , Family Characteristics , Humans , Mycobacterium/growth & development , Mycobacterium Infections, Nontuberculous/epidemiology , Prevalence , Topography, Medical , United States
13.
Integr Comp Biol ; 57(1): 112-120, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28541481

ABSTRACT

SYNOPSIS: Few studies have quantified the relative importance of direct effects of climate change on communities versus indirect effects that are mediated thorough species interactions, and the limited evidence is conflicting. Trait-based approaches have been popular in studies of climate change, but can they be used to estimate direct versus indirect effects? At the species level, thermal tolerance is a trait that is often used to predict winners and losers under scenarios of climate change. But thermal tolerance might also inform when species interactions are likely to be important because only subsets of species will be able to exploit the available warmer climatic niche space, and competition may intensify in the remaining, compressed cooler climatic niche space. Here, we explore the relative roles of the direct effects of temperature change and indirect effects of species interactions on forest ant communities that were heated as part of a large-scale climate manipulation at high- and low-latitude sites in eastern North America. Overall, we found mixed support for the importance of negative species interactions (competition), but found that the magnitude of these interaction effects was predictable based on the heat tolerance of the focal species. Forager abundance and nest site occupancy of heat-intolerant species were more often influenced by negative interactions with other species than by direct effects of temperature. Our findings suggest that measures of species-specific heat tolerance may roughly predict when species interactions will influence responses to global climate change.


Subject(s)
Ants/physiology , Climate Change , Ecosystem , Thermotolerance/physiology , Animals , Forests , Hot Temperature , North America , Species Specificity
14.
Sci Adv ; 2(10): e1600842, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27819044

ABSTRACT

How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.


Subject(s)
Ants/physiology , Forests , Global Warming , Animals , North America
15.
Trends Ecol Evol ; 30(4): 223-32, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25770744

ABSTRACT

Few biologists have studied the evolutionary processes at work in indoor environments. Yet indoor environments comprise approximately 0.5% of ice-free land area--an area as large as the subtropical coniferous forest biome. Here we review the emerging subfield of 'indoor biome' studies. After defining the indoor biome and tracing its deep history, we discuss some of its evolutionary dimensions. We restrict our examples to the species found in human houses--a subset of the environments constituting the indoor biome--and offer preliminary hypotheses to advance the study of indoor evolution. Studies of the indoor biome are situated at the intersection of evolutionary ecology, anthropology, architecture, and human ecology and are well suited for citizen science projects, public outreach, and large-scale international collaborations.


Subject(s)
Biological Evolution , Ecosystem , Animals , Housing , Humans , Microbiota/physiology , Plant Physiological Phenomena
16.
Evol Appl ; 6(2): 266-78, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23798976

ABSTRACT

The future spread and impact of an introduced species will depend on how it adapts to the abiotic and biotic conditions encountered in its new range, so the potential for rapid evolution subsequent to species introduction is a critical, evolutionary dimension of invasion biology. Using a resurrection approach, we provide a direct test for change over time within populations in a species' introduced range, in the Asian shade annual Polygonum cespitosum. We document, over an 11-year period, the evolution of increased reproductive output as well as greater physiological and root-allocational plasticity in response to the more open, sunny conditions found in the North American range in which the species has become invasive. These findings show that extremely rapid adaptive modifications to ecologically-important traits and plastic expression patterns can evolve subsequent to a species' introduction, within populations established in its introduced range. This study is one of the first to directly document evolutionary change in adaptive plasticity. Such rapid evolutionary changes can facilitate the spread of introduced species into novel habitats and hence contribute to their invasive success in a new range. The data also reveal how evolutionary trajectories can differ among populations in ways that can influence invasion dynamics.

17.
Ecology ; 93(11): 2305-12, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23236901

ABSTRACT

Physiological tolerance of environmental conditions can influence species-level responses to climate change. Here, we used species-specific thermal tolerances to predict the community responses of ant species to experimental forest-floor warming at the northern and southern boundaries of temperate hardwood forests in eastern North America. We then compared the predictive ability of thermal tolerance vs. correlative species distribution models (SDMs) which are popular forecasting tools for modeling the effects of climate change. Thermal tolerances predicted the responses of 19 ant species to experimental climate warming at the southern site, where environmental conditions are relatively close to the ants' upper thermal limits. In contrast, thermal tolerances did not predict the responses of the six species in the northern site, where environmental conditions are relatively far from the ants' upper thermal limits. Correlative SDMs were not predictive at either site. Our results suggest that, in environments close to a species' physiological limits, physiological trait-based measurements can successfully forecast the responses of species to future conditions. Although correlative SDMs may predict large-scale responses, such models may not be accurate for predicting site-level responses.


Subject(s)
Adaptation, Physiological/genetics , Ants/genetics , Ants/physiology , Climate Change , Ecosystem , Hot Temperature , Adaptation, Physiological/physiology , Animals , Ants/classification , Models, Biological , Species Specificity , Trees
SELECTION OF CITATIONS
SEARCH DETAIL
...