Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 41(42): 6359-6365, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37696717

ABSTRACT

BACKGROUND: Influenza vaccines prevent influenza-related morbidity and mortality; however, suboptimal vaccine effectiveness (VE) of non-adjuvanted trivalent inactivated influenza vaccine (naTIV) or quadrivalent formulations in older adults prompted the use of enhanced products such as adjuvanted TIV (aTIV). Here, the VE of aTIV is compared to naTIV for preventing influenza-associated hospitalization among older adults. METHODS: A test-negative design study was used with pooled data from the 2012 to 2015 influenza seasons. An inverse probability of treatment (IPT)-weighted logistic regression estimated the Odds Ratio (OR) for laboratory-confirmed influenza-associated hospitalization. VE was calculated as (1-OR)*100% with accompanying 95% confidence intervals (CI). RESULTS: Of 7,101 adults aged ≥ 65, 3,364 received naTIV and 526 received aTIV. The overall VE against influenza hospitalization was 45.9% (95% CI: 40.2%-51.1%) for naTIV and 53.5% (42.8%-62.3%) for aTIV. No statistically significant differences in VE were found between aTIV and naTIV by age group or influenza season, though a trend favoring aTIV over naTIV was noted. Frailty may have impacted VE in aTIV recipients compared to those receiving naTIV, according to an exploratory analysis; VE adjusted by frailty was 59.1% (49.6%-66.8%) for aTIV and 44.8% (39.1%-50.0%) for naTIV. The overall relative VE of aTIV to naTIV against laboratory-confirmed influenza hospital admission was 25% (OR 0.75; 0.61-0.92), demonstrating statistically significant benefit favoring aTIV. CONCLUSIONS: Adjusting for frailty, aTIV showed statistically significantly better protection than naTIV against influenza-associated hospitalizations in older adults. In future studies, it is important to consider frailty as a significant confounder of VE.


Subject(s)
Adjuvants, Immunologic , Frailty , Influenza Vaccines , Influenza, Human , Vaccine Efficacy , Aged , Humans , Canada/epidemiology , Hospitalization , Immunization , Influenza Vaccines/therapeutic use , Influenza, Human/prevention & control , Influenza, Human/epidemiology , Seasons , Vaccines, Inactivated , Vaccines, Combined/therapeutic use
2.
Infect Control Hosp Epidemiol ; 41(5): 499-504, 2020 05.
Article in English | MEDLINE | ID: mdl-32146920

ABSTRACT

OBJECTIVE: Older adults often have atypical presentation of illness and are particularly vulnerable to influenza and its sequelae, making the validity of influenza case definitions particularly relevant. We sought to assess the performance of influenza-like illness (ILI) and severe acute respiratory illness (SARI) criteria in hospitalized older adults. DESIGN: Prospective cohort study. SETTING: The Serious Outcomes Surveillance Network of the Canadian Immunization Research Network undertakes active surveillance for influenza among hospitalized adults. METHODS: Data were pooled from 3 influenza seasons: 2011/12, 2012/13, and 2013/14. The ILI and SARI criteria were defined clinically, and influenza was laboratory confirmed. Frailty was measured using a validated frailty index. RESULTS: Of 11,379 adult inpatients (7,254 aged ≥65 years), 4,942 (2,948 aged ≥65 years) had laboratory-confirmed influenza. Their median age was 72 years (interquartile range [IQR], 58-82) and 52.6% were women. The sensitivity of ILI criteria was 51.1% (95% confidence interval [CI], 49.6-52.6) for younger adults versus 44.6% (95% CI, 43.6-45.8) for older adults. SARI criteria were met by 64.1% (95% CI, 62.7-65.6) of younger adults versus 57.1% (95% CI, 55.9-58.2) of older adults with laboratory-confirmed influenza. Patients with influenza who were prefrail or frail were less likely to meet ILI and SARI case definitions. CONCLUSIONS: A substantial proportion of older adults, particularly those who are frail, are missed by standard ILI and SARI case definitions. Surveillance using these case definitions is biased toward identifying younger cases, and does not capture the true burden of influenza. Because of the substantial fraction of cases missed, surveillance definitions should not be used to guide diagnosis and clinical management of influenza.


Subject(s)
Influenza, Human/diagnosis , Influenza, Human/epidemiology , Aged , Aged, 80 and over , Bias , Canada/epidemiology , Female , Frail Elderly , Hospitalization , Humans , Immunization , Laboratories, Hospital , Male , Prospective Studies , Research , Sensitivity and Specificity , Sentinel Surveillance
3.
Vaccine ; 36(16): 2166-2175, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29548608

ABSTRACT

BACKGROUND: Ongoing assessment of influenza vaccine effectiveness (VE) is critical to inform public health policy. This study aimed to determine the VE of trivalent influenza vaccine (TIV) for preventing influenza-related hospitalizations and other serious outcomes over three consecutive influenza seasons. METHODS: The Serious Outcomes Surveillance (SOS) Network of the Canadian Immunization Research Network (CIRN) conducted active surveillance for influenza in adults ≥16 years (y) of age during the 2011/2012, 2012/2013 and 2013/2014 seasons in hospitals across Canada. A test-negative design was employed: cases were polymerase chain reaction (PCR)-positive for influenza; controls were PCR-negative for influenza and were matched to cases by date, admission site, and age (≥65 y or <65 y). All cases and controls had demographic and clinical characteristics (including influenza immunization status) obtained from the medical record. VE was estimated as 1-OR (odds ratio) in vaccinated vs. unvaccinated patients × 100%. The primary outcome was VE of TIV for preventing laboratory-confirmed influenza-related hospitalization; secondary outcomes included VE of TIV for preventing influenza-related intensive care unit (ICU) admission/mechanical ventilation, and influenza-related death. RESULTS: Overall, 3394 cases and 4560 controls were enrolled; 2078 (61.2%) cases and 2939 (64.5%) controls were ≥65 y. Overall matched, adjusted VE was 41.7% (95% Confidence Interval (CI): 34.4-48.3%); corresponding VE in adults ≥65 y was 39.3% (95% CI: 29.4-47.8%) and 48.0% (95% CI: 37.5-56.7%) in adults <65 y, respectively. VE for preventing influenza-related ICU admission/mechanical ventilation in all ages was 54.1% (95% CI: 39.8-65.0%); in adults ≥65 y, VE for preventing influenza-related death was 74.5% (95% CI: 44.0-88.4%). CONCLUSIONS: While effectiveness of TIV to prevent serious outcomes varies year to year, we demonstrate a statistically significant and clinically important TIV VE for preventing hospitalization and other serious outcomes over three seasons. Public health messaging should highlight the overall benefit of influenza vaccines over time while acknowledging year to year variability. ClinicalTrials.gov Identifier: NCT01517191.


Subject(s)
Hospitalization , Influenza Vaccines/immunology , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Seasons , Aged , Aged, 80 and over , Canada/epidemiology , Case-Control Studies , Comorbidity , Female , History, 21st Century , Humans , Immunization Programs , Influenza A virus/classification , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Influenza, Human/history , Male , Middle Aged , Outcome Assessment, Health Care , Public Health Surveillance , Risk Factors , Vaccination
4.
BMC Infect Dis ; 17(1): 805, 2017 12 29.
Article in English | MEDLINE | ID: mdl-29284435

ABSTRACT

BACKGROUND: The Serious Outcomes Surveillance (SOS) Network was established to monitor seasonal influenza complications among hospitalized Canadian adults and to assess the effectiveness of influenza vaccination against severe outcomes. Here we report age- and strain-specific vaccine effectiveness (VE) in preventing severe outcomes during a season characterized by mixed outbreaks of four different influenza strains. METHODS: This prospective, multicentre, test-negative case-control study evaluated the VE of trivalent influenza vaccine (TIV) in the prevention of laboratory-confirmed influenza-hospitalization in adults aged ≥16 years (all adults) and adults aged 16-64 years (younger adults). The SOS Network identified hospitalized patients with diagnoses potentially attributable to influenza during the 2011/12 influenza season. Swabs collected at admission were tested by reverse transcriptase polymerase chain reaction (RT PCR) or viral culture to discriminate influenza cases (positive) from controls (negative). VE was calculated as 1-odds ratio (OR) of vaccination in cases versus controls × 100. RESULTS: Overall, in all adults, the unadjusted and adjusted VEs of TIV against influenza-hospitalization were 41.8% (95% Confidence Interval [CI]: 26.0, 54.3), and 42.8% (95% CI: 23.8, 57.0), respectively. In younger adults (16-64 years), the unadjusted and adjusted VEs of TIV against influenza-hospitalization were 35.8% (95% CI: 4.5, 56.8) and 33.2% (95% CI: -6.7, 58.2), respectively. In the all adults group, adjusted VE against influenza A/H1N1 was 72.5% (95% CI: 30.5, 89.1), against A/H3N2 was 86.1% (95% CI: 40.1, 96.8), against B/Victoria was 40.5% (95% CI: -28.9, 72.6), and against B/Yamagata was 32.3% (95% CI: -8.3, 57.7). The adjusted estimate of early season VE (from November 1 to March 11) was 54.4% (95% CI: 29.7-70.4), which was higher than late season (from March 11 to May 25) VE estimate (VE: 29.7%, 95% CI: -5.3, 53.1). CONCLUSIONS: These results suggest that TIV was highly effective against A viruses and moderately effective against B viruses during a mild season characterised by co-circulation of four influenza strains in Canada. Findings underscore the need to provide VE assessment by subtype/lineage as well as the timing of vaccination (early season vs late season) to accurately evaluate vaccine performance and thus guide public health decision-making. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01517191. Registration was retrospective and the date of registration was January 17, 2012.


Subject(s)
Influenza Vaccines , Influenza, Human/epidemiology , Influenza, Human/prevention & control , Adolescent , Adult , Aged , Canada/epidemiology , Case-Control Studies , Disease Outbreaks , Female , Hospitalization/statistics & numerical data , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza B virus/immunology , Influenza B virus/pathogenicity , Influenza Vaccines/immunology , Influenza Vaccines/therapeutic use , Influenza, Human/virology , Male , Middle Aged , Odds Ratio , Prospective Studies , Seasons , Vaccination , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...