Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Biochemistry ; 63(6): 777-787, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38437710

ABSTRACT

The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of viral and innate immune response proteins. While Z-form adoption is preferred by certain sequences, such as the commonly studied (CpG)n repeats, Zα has been reported to bind to a wide range of sequence contexts. Studying how Zα interacts with B-/A-form helices prior to their conversion to the Z-conformation is challenging as binding coincides with Z-form adoption. Here, we studied the binding of Zα fromHomo sapiens ADAR1 to a locked "A-type" version of the (CpG)3 construct (LNA (CpG)3) where the sugar pucker is locked into the C3'-endo/C2'-exo conformation, which prevents the duplex from adopting the alternating C2'/C3'-endo sugar puckers found in the Z-conformation. Using NMR and other biophysical techniques, we find that ZαADAR1 binds to the LNA (CpG)3 using a similar interface as for Z-form binding, with a dissociation constant (KD) of ∼4 µM. In contrast to Z-DNA/Z-RNA, where two ZαADAR1 bind to every 6 bp stretch, our data suggests that ZαADAR1 binds to multiple LNA molecules, indicating a completely different binding mode. Because ZαADAR1 binds relatively tightly to a non-Z-form model, its binding to B/A-form helices may need to be considered when experiments are carried out which attempt to identify the Z-form targets of Zα domains. The use of LNA constructs may be beneficial in experiments where negative controls for Z-form adoption are needed.


Subject(s)
DNA, Z-Form , Nucleic Acids , Nucleic Acid Conformation , Binding Sites , RNA , Sugars , Adenosine Deaminase/metabolism
2.
J Am Chem Soc ; 146(1): 677-694, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38131335

ABSTRACT

The left-handed Z-conformation of nucleic acids can be adopted by both DNA and RNA when bound by Zα domains found within a variety of innate immune response proteins. Zα domains stabilize this higher-energy conformation by making specific interactions with the unique geometry of Z-DNA/Z-RNA. However, the mechanism by which a right-handed helix contorts to become left-handed in the presence of proteins, including the intermediate steps involved, is poorly understood. Through a combination of nuclear magnetic resonance (NMR) and other biophysical measurements, we have determined that in the absence of Zα, under low salt conditions at room temperature, d(CpG) and r(CpG) constructs show no observable evidence of transient Z-conformations greater than 0.5% on either the intermediate or slow NMR time scales. At higher temperatures, we observed a transient unfolded intermediate. The ease of melting a nucleic acid duplex correlates with Z-form adoption rates in the presence of Zα. The largest contributing factor to the activation energies of Z-form adoption as calculated by Arrhenius plots is the ease of flipping the sugar pucker, as required for Z-DNA and Z-RNA. Together, these data validate the previously proposed "zipper model" for Z-form adoption in the presence of Zα. Overall, Z-conformations are more likely to be adopted by double-stranded DNA and RNA regions flanked by less stable regions and by RNAs experiencing torsional/mechanical stress.


Subject(s)
DNA, Z-Form , Nucleic Acids , Nucleic Acid Conformation , Binding Sites , DNA/chemistry , RNA
3.
J Mol Biol ; 435(8): 168040, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36889460

ABSTRACT

The Zα domain of ADARp150 is critical for proper Z-RNA substrate binding and is a key factor in the type-I interferon response pathway. Two point-mutations in this domain (N173S and P193A), which cause neurodegenerative disorders, are linked to decreased A-to-I editing in disease models. To understand this phenomenon at the molecular level, we biophysically and structurally characterized these two mutated domains, revealing that they bind Z-RNA with a decreased affinity. Less efficient binding to Z-RNA can be explained by structural changes in beta-wing, part of the Z-RNA-protein interface, and alteration of conformational dynamics of the proteins.


Subject(s)
Adenosine Deaminase , Autoimmune Diseases of the Nervous System , Nervous System Malformations , Humans , Adenosine Deaminase/genetics , Adenosine Deaminase/chemistry , Adenosine Deaminase/metabolism , Autoimmune Diseases of the Nervous System/enzymology , Autoimmune Diseases of the Nervous System/genetics , Binding Sites , Nervous System Malformations/enzymology , Nervous System Malformations/genetics , RNA/chemistry , Protein Domains/genetics , Point Mutation , Nucleic Acid Conformation
4.
Methods Mol Biol ; 2651: 251-275, 2023.
Article in English | MEDLINE | ID: mdl-36892773

ABSTRACT

While DNA and RNA helices often adopt the canonical B- or A-conformation, the fluid conformational landscape of nucleic acids allows for many higher energy states to be sampled. One such state is the Z-conformation of nucleic acids, which is unique in that it is left-handed and has a "zigzag" backbone. The Z-conformation is recognized and stabilized by Z-DNA/RNA binding domains called Zα domains. We recently demonstrated that a wide range of RNAs can adopt partial Z-conformations termed "A-Z junctions" upon binding to Zα and that the formation of such conformations may be dependent upon both sequence and context. In this chapter, we present general protocols for characterizing the binding of Zα domains to A-Z junction-forming RNAs for the purpose of determining the affinity and stoichiometry of interactions as well as the extent and location of Z-RNA formation.


Subject(s)
DNA, Z-Form , Nucleic Acid Conformation , DNA/chemistry , RNA , Protein Structure, Secondary
5.
Magnetochemistry ; 9(1)2023 Jan.
Article in English | MEDLINE | ID: mdl-36776538

ABSTRACT

Protein methyl groups can participate in multiple motional modes on different time scales. Sub-nanosecond to nano-second time scale motions of methyl axes are particularly challenging to detect for small proteins in solutions. In this work we employ NMR relaxation interference between the methyl H-H/H-C dipole-dipole interactions [Sun&Tugarinov, J. Magn. Reason. 2012] to characterize methyl axes motions as a function of temperature in a small model protein villin headpiece subdomain (HP36), in which all non-exchangeable protons are deuterated with the exception of methyl groups of leucine and valine residues. The data points to the existence of slow motional modes of methyl axes on sub-nanosecond to nanosecond time scales. Further, at high temperatures for which the overall tumbling of the protein is on the order of 2 ns, we observe a coupling between the slow internal motion and the overall molecular tumbling, based on the anomalous order parameters and their temperature-dependent trends. The addition of 28%(w/w) glycerol-d8 increases the viscosity of the solvent and separates the timescales of internal and overall tumbling, thus permitting for another view of the necessity of the coupling assumption for these sites at high temperatures.

6.
RNA ; 29(3): 273-281, 2023 03.
Article in English | MEDLINE | ID: mdl-36596670

ABSTRACT

Z-RNA is a higher-energy, left-handed conformation of RNA, whose function has remained elusive. A growing body of work alludes to regulatory roles for Z-RNA in the immune response. Here, we review how Z-RNA features present in cellular RNAs-especially containing retroelements-could be recognized by a family of winged helix proteins, with an impact on host defense. We also discuss how mutations to specific Z-contacting amino acids disrupt their ability to stabilize Z-RNA, resulting in functional losses. We end by highlighting knowledge gaps in the field, which, if addressed, would significantly advance this active area of research.


Subject(s)
DNA, Z-Form , RNA , RNA/chemistry , Adenosine Deaminase/metabolism , Immunity, Innate/genetics , Amino Acids , Biology
7.
Molecules ; 28(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36677900

ABSTRACT

Despite structural differences between the right-handed conformations of A-RNA and B-DNA, both nucleic acids adopt very similar, left-handed Z-conformations. In contrast to their structural similarities and sequence preferences, RNA and DNA exhibit differences in their ability to adopt the Z-conformation regarding their hydration shells, the chemical modifications that promote the Z-conformation, and the structure of junctions connecting them to right-handed segments. In this review, we highlight the structural and chemical properties of both Z-DNA and Z-RNA and delve into the potential factors that contribute to both their similarities and differences. While Z-DNA has been extensively studied, there is a gap of knowledge when it comes to Z-RNA. Where such information is lacking, we try and extend the principles of Z-DNA stability and formation to Z-RNA, considering the inherent differences of the nucleic acids.


Subject(s)
DNA, Z-Form , Nucleic Acids , RNA , Nucleic Acid Conformation , DNA/chemistry
8.
Magn Reson Lett ; 2(2): 61-68, 2022 May.
Article in English | MEDLINE | ID: mdl-35734611

ABSTRACT

Residual dipolar couplings (RDCs) are powerful nuclear magnetic resonance (NMR) probes for the structure calculation of biomacromolecules. Typically, an alignment tensor that defines the orientation of the entire molecule relative to the magnetic field is determined either before refinement of individual bond vectors or simultaneously with this refinement. For single-domain proteins this approach works well since all bond vectors can be described within the same coordinate frame, which is given by the alignment tensor. However, novel approaches are sought after for systems where no universal alignment tensor can be used. Here, we present an approach that can be applied to two-domain proteins that enables the calculation of multiple states within each domain as well as with respect to the relative positions of the two domains.

9.
J Am Chem Soc ; 143(39): 16055-16067, 2021 10 06.
Article in English | MEDLINE | ID: mdl-34579531

ABSTRACT

Proteins composed of multiple domains allow for structural heterogeneity and interdomain dynamics that may be vital for function. Intradomain structures and dynamics can influence interdomain conformations and vice versa. However, no established structure determination method is currently available that can probe the coupling of these motions. The protein Pin1 contains separate regulatory and catalytic domains that sample "extended" and "compact" states, and ligand binding changes this equilibrium. Ligand binding and interdomain distance have been shown to impact the activity of Pin1, suggesting interdomain allostery. In order to characterize the conformational equilibrium of Pin1, we describe a novel method to model the coupling between intra- and interdomain dynamics at atomic resolution using multistate ensembles. The method uses time-averaged nuclear magnetic resonance (NMR) restraints and double electron-electron resonance (DEER) data that resolve distance distributions. While the intradomain calculation is primarily driven by exact nuclear Overhauser enhancements (eNOEs), J couplings, and residual dipolar couplings (RDCs), the relative domain distribution is driven by paramagnetic relaxation enhancement (PREs), RDCs, interdomain NOEs, and DEER. Our data support a 70:30 population of the compact and extended states in apo Pin1. A multistate ensemble describes these conformations simultaneously, with distinct conformational differences located in the interdomain interface stabilizing the compact or extended states. We also describe correlated conformations between the catalytic site and interdomain interface that may explain allostery driven by interdomain contact.


Subject(s)
Magnetic Resonance Spectroscopy/methods , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , Humans , Models, Molecular , Molecular Dynamics Simulation , Nitric Oxide Synthase Type III/chemistry , Nitric Oxide Synthase Type III/metabolism , Protein Conformation
10.
J Mol Biol ; 433(15): 167108, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34161778

ABSTRACT

The nucleocapsid protein is one of four structural proteins encoded by SARS-CoV-2 and plays a central role in packaging viral RNA and manipulating the host cell machinery, yet its dynamic behavior and promiscuity in nucleotide binding has made standard structural methods to address its atomic-resolution details difficult. To begin addressing the SARS-CoV-2 nucleocapsid protein interactions with both RNA and the host cell along with its dynamic behavior, we have specifically focused on the folded N-terminal domain (NTD) and its flanking regions using nuclear magnetic resonance solution studies. Studies performed here reveal a large repertoire of interactions, which includes a temperature-dependent self-association mediated by the disordered flanking regions that also serve as binding sites for host cell cyclophilin-A while nucleotide binding is largely mediated by the central NTD core. NMR studies that include relaxation experiments have revealed the complicated dynamic nature of this viral protein. Specifically, while much of the N-terminal core domain exhibits micro-millisecond motions, a central ß-hairpin shows elevated inherent flexibility on the pico-nanosecond timescale and the serine/arginine-rich region of residues 176-209 undergoes multiple exchange phenomena. Collectively, these studies have begun to reveal the complexities of the nucleocapsid protein dynamics and its preferred interaction sites with its biological targets.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Mutation , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Binding Sites , Evolution, Molecular , HEK293 Cells , Humans , Immune Evasion , Models, Molecular , Protein Conformation , Protein Domains , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics
11.
Biomol NMR Assign ; 15(2): 273-279, 2021 10.
Article in English | MEDLINE | ID: mdl-33742389

ABSTRACT

Adenosine-to-inosine (A-to-I) editing of a subset of RNAs in a eukaryotic cell is required in order to avoid triggering the innate immune system. Editing is carried out by ADAR1, which exists as short (p110) and long (p150) isoforms. ADAR1p150 is mostly cytoplasmic, possesses a Z-RNA binding domain (Zα), and is only expressed during the innate immune response. A structurally homologous domain to Zα, the Zß domain, is separated by a long linker from Zα on the N-terminus of ADAR1 but its function remains unknown. Zß does not bind to RNA in isolation, yet the binding kinetics of the segment encompassing Zα, Zß and the 95-residue linker between the two domains (Zα-Zß) are markedly different compared to Zα alone. Here we present the solution NMR backbone assignment of Zα-Zß from H. Sapiens ADAR1. The predicted secondary structure of Zα-Zß based on chemical shifts is in agreement with previously determined structures of Zα and Zß in isolation, and indicates that the linker is intrinsically disordered. Comparison of the chemical shifts between the individual Zα and Zß domains to the full Zα-Zß construct suggests that Zß may interact with the linker, the function of which is currently unknown.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular
12.
Nat Commun ; 12(1): 793, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33542240

ABSTRACT

Adenosine-to-inosine (A-to-I) editing of eukaryotic cellular RNAs is essential for protection against auto-immune disorders. Editing is carried out by ADAR1, whose innate immune response-specific cytoplasmic isoform possesses a Z-DNA binding domain (Zα) of unknown function. Zα also binds to CpG repeats in RNA, which are a hallmark of Z-RNA formation. Unexpectedly, Zα has been predicted - and in some cases even shown - to bind to specific regions within mRNA and rRNA devoid of such repeats. Here, we use NMR, circular dichroism, and other biophysical approaches to demonstrate and characterize the binding of Zα to mRNA and rRNA fragments. Our results reveal a broad range of RNA sequences that bind to Zα and adopt Z-RNA conformations. Binding is accompanied by destabilization of neighboring A-form regions which is similar in character to what has been observed for B-Z-DNA junctions. The binding of Zα to non-CpG sequences is specific, cooperative and occurs with an affinity in the low micromolar range. This work allows us to propose a model for how Zα could influence the RNA binding specificity of ADAR1.


Subject(s)
Adenosine Deaminase/metabolism , Alu Elements/genetics , Protein Domains , RNA, Ribosomal/metabolism , RNA-Binding Proteins/metabolism , Adenosine Deaminase/genetics , Adenosine Deaminase/isolation & purification , Adenosine Deaminase/ultrastructure , Circular Dichroism , Immunity, Innate , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , RNA Recognition Motif , RNA, Ribosomal/genetics , RNA, Ribosomal/immunology , RNA, Ribosomal/ultrastructure , RNA-Binding Proteins/genetics , RNA-Binding Proteins/isolation & purification , RNA-Binding Proteins/ultrastructure , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure
13.
J Mol Biol ; 433(4): 166812, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33450249

ABSTRACT

Spindly is a dynein adaptor involved in chromosomal segregation during cell division. While Spindly's N-terminal domain binds to the microtubule motor dynein and its activator dynactin, the C-terminal domain (Spindly-C) binds its cargo, the ROD/ZW10/ZWILCH (RZZ) complex in the outermost layer of the kinetochore. In humans, Spindly-C binds to ROD, while in C. elegans Spindly-C binds to both Zwilch (ZWL-1) and ROD-1. Here, we employed various biophysical techniques to characterize the structure, dynamics and interaction sites of C. elegans Spindly-C. We found that despite the overall disorder, there are two regions with variable α-helical propensity. One of these regions is located in the C-terminal half and is compact; the second is sparsely populated in the N-terminal half. The interactions with both ROD-1 and ZWL-1 are mostly mediated by the same two sequentially remote disordered segments of Spindly-C, which are C-terminally adjacent to the helical regions. The findings suggest that the Spindly-C binding sites on ROD-1 in the ROD-1/ZWL-1 complex context are either shielded or conformationally weakened by the presence of ZWL-1 such that only ZWL-1 directly interacts with Spindly-C in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins/chemistry , Dyneins/chemistry , Kinetochores/chemistry , Protein Interaction Domains and Motifs , Repressor Proteins/chemistry , Animals , Caenorhabditis elegans , Caenorhabditis elegans Proteins/metabolism , Humans , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Magnetic Resonance Spectroscopy , Protein Binding , Protein Conformation , Spindle Apparatus/metabolism , Structure-Activity Relationship
14.
mBio ; 11(5)2020 09 29.
Article in English | MEDLINE | ID: mdl-32994331

ABSTRACT

Viruses have developed innovative strategies to exploit the cellular machinery and overcome the antiviral defenses of the host, often using specifically structured RNA elements. Examples are found in the Flavivirus genus (in the family Flaviviridae), where during flaviviral infection, pathogenic subgenomic flaviviral RNAs (sfRNAs) accumulate in the cell. These sfRNAs are formed when a host cell 5' to 3' exoribonuclease degrades the viral genomic RNA but is blocked by an exoribonuclease-resistant RNA structure (xrRNA) located in the viral genome's 3' untranslated region (UTR). Although known to exist in several Flaviviridae genera, the full distribution and diversity of xrRNAs in this family were unknown. Using the recently solved high-resolution structure of an xrRNA from the divergent flavivirus Tamana bat virus (TABV) as a reference, we used bioinformatic searches to identify xrRNAs in the remaining three genera of Flaviviridae: Pegivirus, Pestivirus, and Hepacivirus We biochemically and structurally characterized several examples, determining that they are genuine xrRNAs with a conserved fold. These new xrRNAs look superficially similar to the previously described xrRNAs but possess structural differences making them distinct from previous classes of xrRNAs. Overall, we have identified the presence of xrRNA in all four genera of Flaviviridae, but not in all species. Our findings thus require adjustments of previous xrRNA classification schemes and expand the previously known distribution of xrRNA in Flaviviridae.IMPORTANCE The members of the Flaviviridae comprise one of the largest families of positive-sense single-stranded RNA (+ssRNA) and are divided into the Flavivirus, Pestivirus, Pegivirus, and Hepacivirus genera. The genus Flavivirus contains many medically relevant viruses such as Zika virus, dengue virus, and Powassan virus. In these, a part of the RNA of the virus twists up into a distinct three-dimensional shape called an exoribonuclease-resistant RNA (xrRNA) that blocks the ability of the cell to "chew up" the viral RNA. Hence, part of the RNA of the virus remains intact, and this protected part is important for viral infection. These xrRNAs were known to occur in flaviviruses, but whether they existed in the other members of the family was not known. In this study, we identified a new subclass of xrRNA found not only in flaviviruses but also in the remaining three genera. The fact that these structured viral RNAs exist throughout the Flaviviridae family suggests they are important parts of the infection strategy of diverse pathogens, which could lead to new avenues of research.


Subject(s)
Exoribonucleases/metabolism , Flaviviridae/classification , RNA, Viral/classification , Computational Biology , Exoribonucleases/genetics , Genome, Viral , Nucleic Acid Conformation , RNA Stability/genetics
15.
J Biomol NMR ; 74(12): 717-739, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32880802

ABSTRACT

We have previously reported on the measurement of exact NOEs (eNOEs), which yield a wealth of additional information in comparison to conventional NOEs. We have used these eNOEs in a variety of applications, including calculating high-resolution structures of proteins and RNA molecules. The collection of eNOEs is challenging, however, due to the need to measure a NOESY buildup series consisting of typically four NOESY spectra with varying mixing times in a single measurement session. While the 2D version can be completed in a few days, a fully sampled 3D-NOESY buildup series can take 10 days or more to acquire. This can be both expensive as well as problematic in the case of samples that are not stable over such a long period of time. One potential method to significantly decrease the required measurement time of eNOEs is to use non-uniform sampling (NUS) to decrease the number of points measured in the indirect dimensions. The effect of NUS on the extremely tight distance restraints extracted from eNOEs may be very pronounced. Therefore, we investigated the fidelity of eNOEs measured from three test cases at decreasing NUS densities: the 18.4 kDa protein human Pin1, the 4.1 kDa WW domain of Pin1 (both in 3D), and a 4.6 kDa 14mer RNA UUCG tetraloop (2D). Our results show that NUS imparted negligible error on the eNOE distances derived from good quality data down to 10% sampling for all three cases, but there is a noticeable decrease in the eNOE yield that is dependent upon the underlying sparsity, and thus complexity, of the sample. For Pin1, this transition occurred at roughly 40% while for the WW domain and the UUCG tetraloop it occurred at lower NUS densities of 20% and 10%, respectively. We rationalized these numbers through reconstruction simulations under various conditions. The extent of this loss depends upon the number of scans taken as well as the number of peaks to be reconstructed. Based on these findings, we have created guidelines for choosing an optimal NUS density depending on the number of peaks needed to be reconstructed in the densest region of a 2D or 3D NOESY spectrum.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular , Computer Simulation , Humans , Kinetics , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , Protein Domains , Time Factors
16.
Nucleic Acids Res ; 48(11): 5839-5848, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32427326

ABSTRACT

We provide an atomic-level description of the structure and dynamics of the UUCG RNA stem-loop by combining molecular dynamics simulations with experimental data. The integration of simulations with exact nuclear Overhauser enhancements data allowed us to characterize two distinct states of this molecule. The most stable conformation corresponds to the consensus three-dimensional structure. The second state is characterized by the absence of the peculiar non-Watson-Crick interactions in the loop region. By using machine learning techniques we identify a set of experimental measurements that are most sensitive to the presence of non-native states. We find that although our MD ensemble, as well as the consensus UUCG tetraloop structures, are in good agreement with experiments, there are remaining discrepancies. Together, our results show that (i) the MD simulation overstabilize a non-native loop conformation, (ii) eNOE data support its presence with a population of ≈10% and (iii) the structural interpretation of experimental data for dynamic RNAs is highly complex, even for a simple model system such as the UUCG tetraloop.


Subject(s)
Magnetic Resonance Spectroscopy , Molecular Dynamics Simulation , Movement , Nucleic Acid Conformation , Base Sequence , Bayes Theorem , Datasets as Topic , Entropy , RNA/chemistry
17.
Protein Sci ; 29(7): 1641-1654, 2020 07.
Article in English | MEDLINE | ID: mdl-32356390

ABSTRACT

We have investigated the effect of deuteration of non-exchangeable protons on protein global thermal stability, hydrophobicity, and local flexibility using well-known thermostable model systems such as the villin headpiece subdomain (HP36) and the third immunoglobulin G-binding domain of protein G (GB3). Reversed-phase high-performance liquid chromatography (RP-HPLC) measurements as a function of temperature probe global thermal stability in the presence of acetonitrile, while differential scanning calorimetry determines thermal stability in solution. Both indicate small but measurable changes in the order of several degrees. RP-HPLC also permitted quantification of the effect of deuteration of just three core phenylalanine side chains of HP36. NMR dynamics investigation has focused on methyl axes motions using cross-correlated relaxation measurements. The analysis of order parameters provided a complex picture indicating that deuteration generally increases motional amplitudes of sub-nanosecond motion in GB3 but decreases those in HP36. Combined with earlier dynamics measurements at Cα -Cß sites and backbone sites of GB3, which probed slower time scales, the results point to the need to probe multiple atoms in the protein and variety of time scales to the discern the full complexity of the effects of deuteration on dynamics.


Subject(s)
Bacterial Proteins/chemistry , Protein Folding , Protons , Hot Temperature , Hydrophobic and Hydrophilic Interactions , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Protein Stability
18.
Biomol NMR Assign ; 13(2): 339-343, 2019 10.
Article in English | MEDLINE | ID: mdl-31264103

ABSTRACT

Olduvai protein domains, encoded primarily by NBPF genes, have been linked to both human brain evolution and cognitive diseases such as autism and schizophrenia. There are six primary domains that comprise the Olduvai family: three conserved domains (CON1-3) and three human lineage-specific domains (HLS1-3), which typically occur as a triplet (HLS1, HLS2 and HLS3). Herein, we present the solution NMR assignment of the backbone chemical shifts of the separate HLS1, 2 and 3 domains of NBPF15. Our data suggest that there is no change in the structure of the separate domains when compared to the full-length triplet (HLS1-HLS2-HLS3). We also demonstrate that there is no direct interaction between the three domains.


Subject(s)
Intracellular Signaling Peptides and Proteins/chemistry , Nuclear Magnetic Resonance, Biomolecular , Humans , Protein Domains , Solutions
19.
PLoS Biol ; 17(1): e3000100, 2019 01.
Article in English | MEDLINE | ID: mdl-30615611

ABSTRACT

All animal cells use the motor cytoplasmic dynein 1 (dynein) to transport diverse cargo toward microtubule minus ends and to organize and position microtubule arrays such as the mitotic spindle. Cargo-specific adaptors engage with dynein to recruit and activate the motor, but the molecular mechanisms remain incompletely understood. Here, we use structural and dynamic nuclear magnetic resonance (NMR) analysis to demonstrate that the C-terminal region of human dynein light intermediate chain 1 (LIC1) is intrinsically disordered and contains two short conserved segments with helical propensity. NMR titration experiments reveal that the first helical segment (helix 1) constitutes the main interaction site for the adaptors Spindly (SPDL1), bicaudal D homolog 2 (BICD2), and Hook homolog 3 (HOOK3). In vitro binding assays show that helix 1, but not helix 2, is essential in both LIC1 and LIC2 for binding to SPDL1, BICD2, HOOK3, RAB-interacting lysosomal protein (RILP), RAB11 family-interacting protein 3 (RAB11FIP3), ninein (NIN), and trafficking kinesin-binding protein 1 (TRAK1). Helix 1 is sufficient to bind RILP, whereas other adaptors require additional segments preceding helix 1 for efficient binding. Point mutations in the C-terminal helix 1 of Caenorhabditis elegans LIC, introduced by genome editing, severely affect development, locomotion, and life span of the animal and disrupt the distribution and transport kinetics of membrane cargo in axons of mechanosensory neurons, identical to what is observed when the entire LIC C-terminal region is deleted. Deletion of the C-terminal helix 2 delays dynein-dependent spindle positioning in the one-cell embryo but overall does not significantly perturb dynein function. We conclude that helix 1 in the intrinsically disordered region of LIC provides a conserved link between dynein and structurally diverse cargo adaptor families that is critical for dynein function in vivo.


Subject(s)
Cytoplasmic Dyneins/genetics , Cytoplasmic Dyneins/metabolism , Dyneins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Carrier Proteins/metabolism , Conserved Sequence , Dynactin Complex , Dyneins/metabolism , HeLa Cells , Humans , Lysosomes/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Nuclear Magnetic Resonance, Biomolecular/methods , Protein Binding/physiology , Protein Transport/genetics , Protein Transport/physiology , Spindle Apparatus
20.
Biomol NMR Assign ; 13(1): 85-89, 2019 04.
Article in English | MEDLINE | ID: mdl-30353504

ABSTRACT

Pin1 is a human peptidyl-prolyl cis-trans isomerase important for the regulation of phosphoproteins that are implicated in many diseases including cancer and Alzheimer's. Further biophysical study of Pin1 will elucidate the importance of the two-domain system to regulate its own activity. Here, we report near-complete backbone and side-chain 1H, 13C and 15N NMR chemical shift assignments of full-length, apo Pin1 for the purpose of studying interdomain allostery and dynamics.


Subject(s)
Apoproteins/chemistry , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , Nuclear Magnetic Resonance, Biomolecular , Phosphoproteins/chemistry , Allosteric Regulation , Humans , Protein Domains
SELECTION OF CITATIONS
SEARCH DETAIL
...