Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
JAMA Oncol ; 9(12): 1669-1677, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37824137

ABSTRACT

Importance: Patients with relapsed small cell lung cancer (SCLC), a high replication stress tumor, have poor prognoses and few therapeutic options. A phase 2 study showed antitumor activity with the addition of the ataxia telangiectasia and Rad3-related kinase inhibitor berzosertib to topotecan. Objective: To investigate whether the addition of berzosertib to topotecan improves clinical outcomes for patients with relapsed SCLC. Design, Setting, and Participants: Between December 1, 2019, and December 31, 2022, this open-label phase 2 randomized clinical trial recruited 60 patients with SCLC and relapse after 1 or more prior therapies from 16 US cancer centers. Patients previously treated with topotecan were not eligible. Interventions: Eligible patients were randomly assigned to receive topotecan alone (group 1), 1.25 mg/m2 intravenously on days 1 through 5, or with berzosertib (group 2), 210 mg/m2 intravenously on days 2 and 5, in 21-day cycles. Randomization was stratified by tumor sensitivity to first-line platinum-based chemotherapy. Main Outcomes and Measures: The primary end point was progression-free survival (PFS) in the intention-to-treat population. Secondary end points included overall survival (OS) in the overall population and among patients with platinum-sensitive or platinum-resistant tumors. The PFS and OS for each treatment group were estimated using the Kaplan-Meier method. The log-rank test was used to compare PFS and OS between the 2 groups, and Cox proportional hazards models were used to estimate the treatment hazard ratios (HRs) and the corresponding 2-sided 95% CI. Results: Of 60 patients (median [range] age, 59 [34-79] years; 33 [55%] male) included in this study, 20 were randomly assigned to receive topotecan alone and 40 to receive a combination of topotecan with berzosertib. After a median (IQR) follow-up of 21.3 (18.1-28.3) months, there was no difference in PFS between the 2 groups (median, 3.0 [95% CI, 1.2-5.1] months for group 1 vs 3.9 [95% CI, 2.8-4.6] months for group 2; HR, 0.80 [95% CI, 0.46-1.41]; P = .44). Overall survival was significantly longer with the combination therapy (5.4 [95% CI, 3.2-6.8] months vs 8.9 [95% CI, 4.8-11.4] months; HR, 0.53 [95% CI, 0.29-0.96], P = .03). Adverse event profiles were similar between the 2 groups (eg, grade 3 or 4 thrombocytopenia, 11 of 20 [55%] vs 20 of 40 [50%], and any grade nausea, 9 of 20 [45%] vs 14 of 40 [35%]). Conclusions and Relevance: In this randomized clinical trial, treatment with berzosertib plus topotecan did not improve PFS compared with topotecan therapy alone among patients with relapsed SCLC. However, the combination treatment significantly improved OS. Trial Registration: ClinicalTrials.gov Identifier: NCT03896503.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Male , Middle Aged , Female , Small Cell Lung Carcinoma/pathology , Topotecan/adverse effects , Lung Neoplasms/pathology , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Recurrence
2.
Clin Cancer Res ; 29(18): 3603-3611, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37227187

ABSTRACT

PURPOSE: Despite promising preclinical studies, toxicities have precluded combinations of chemotherapy and DNA damage response (DDR) inhibitors. We hypothesized that tumor-targeted chemotherapy delivery might enable clinical translation of such combinations. PATIENTS AND METHODS: In a phase I trial, we combined sacituzumab govitecan, antibody-drug conjugate (ADC) that delivers topoisomerase-1 inhibitor SN-38 to tumors expressing Trop-2, with ataxia telangiectasia and Rad3-related (ATR) inhibitor berzosertib. Twelve patients were enrolled across three dose levels. RESULTS: Treatment was well tolerated, with improved safety over conventional chemotherapy-based combinations, allowing escalation to the highest dose. No dose-limiting toxicities or clinically relevant ≥grade 4 adverse events occurred. Tumor regressions were observed in 2 patients with neuroendocrine prostate cancer, and a patient with small cell lung cancer transformed from EGFR-mutant non-small cell lung cancer. CONCLUSIONS: ADC-based delivery of cytotoxic payloads represents a new paradigm to increase efficacy of DDR inhibitors. See related commentary by Berg and Choudhury, p. 3557.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Immunoconjugates , Lung Neoplasms , Male , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Camptothecin/adverse effects , Camptothecin/administration & dosage , Immunoconjugates/adverse effects , Immunoconjugates/administration & dosage
3.
Cancer Discov ; 13(4): 928-949, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36715552

ABSTRACT

Small-cell lung cancer (SCLC) is an aggressive neuroendocrine lung cancer. Oncogenic MYC amplifications drive SCLC heterogeneity, but the genetic mechanisms of MYC amplification and phenotypic plasticity, characterized by neuroendocrine and nonneuroendocrine cell states, are not known. Here, we integrate whole-genome sequencing, long-range optical mapping, single-cell DNA sequencing, and fluorescence in situ hybridization to find extrachromosomal DNA (ecDNA) as a primary source of SCLC oncogene amplifications and driver fusions. ecDNAs bring to proximity enhancer elements and oncogenes, creating SCLC transcription-amplifying units, driving exceptionally high MYC gene dosage. We demonstrate that cell-free nucleosome profiling can noninvasively detect ecDNA amplifications in plasma, facilitating its genome-wide interrogation in SCLC and other cancers. Altogether, our work provides the first comprehensive map of SCLC ecDNA and describes a new mechanism that governs MYC-driven SCLC heterogeneity. ecDNA-enabled transcriptional flexibility may explain the significantly worse survival outcomes of SCLC harboring complex ecDNA amplifications. SIGNIFICANCE: MYC drives SCLC progression, but the genetic basis of MYC-driven SCLC evolution is unknown. Using SCLC as a paradigm, we report how ecDNA amplifications function as MYC-amplifying units, fostering tumor plasticity and a high degree of tumor heterogeneity. This article is highlighted in the In This Issue feature, p. 799.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , In Situ Hybridization, Fluorescence , Lung Neoplasms/genetics , Oncogenes , DNA , Gene Amplification
4.
Mol Cancer Ther ; 21(11): 1722-1728, 2022 11 03.
Article in English | MEDLINE | ID: mdl-35999657

ABSTRACT

Alterations in the ATM gene are among the most common somatic and hereditary cancer mutations, and ATM-deficient tumors are hypersensitive to DNA-damaging agents. A synthetic lethal combination of DNA-damaging agents and DNA repair inhibitors could have widespread utility in ATM-deficient cancers. However, overlapping normal tissue toxicities from these drug classes have precluded their clinical translation. We investigated PLX038, a releasable polyethylene glycol-conjugate of the topoisomerase I inhibitor SN-38, in ATM wild-type and null isogenic xenografts and in a BRCA1-deficient xenograft. PLX038 monotherapy and combination with PARP inhibition potently inhibited the growth of both BRCA1- and ATM-deficient tumors. A patient with an ATM-mutated breast cancer treated with PLX038 and the PARP inhibitor rucaparib achieved rapid, symptomatic, and radiographic complete response lasting 12 months. Single-agent PLX038 or PLX038 in combination with DNA damage response inhibitors are novel therapeutic paradigms for patients with ATM-loss cancers.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Topoisomerase I Inhibitors , Humans , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/therapeutic use , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , DNA Repair
5.
Nat Commun ; 13(1): 2023, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440132

ABSTRACT

Molecular subtypes of small cell lung cancer (SCLC) defined by the expression of key transcription regulators have recently been proposed in cell lines and limited number of primary tumors. The clinical and biological implications of neuroendocrine (NE) subtypes in metastatic SCLC, and the extent to which they vary within and between patient tumors and in patient-derived models is not known. We integrate histology, transcriptome, exome, and treatment outcomes of SCLC from a range of metastatic sites, revealing complex intra- and intertumoral heterogeneity of NE differentiation. Transcriptomic analysis confirms previously described subtypes based on ASCL1, NEUROD1, POU2F3, YAP1, and ATOH1 expression, and reveal a clinical subtype with hybrid NE and non-NE phenotypes, marked by chemotherapy-resistance and exceedingly poor outcomes. NE tumors are more likely to have RB1, NOTCH, and chromatin modifier gene mutations, upregulation of DNA damage response genes, and are more likely to respond to replication stress targeted therapies. In contrast, patients preferentially benefited from immunotherapy if their tumors were non-NE. Transcriptional phenotypes strongly skew towards the NE state in patient-derived model systems, an observation that was confirmed in paired patient-matched tumors and xenografts. We provide a framework that unifies transcriptomic and genomic dimensions of metastatic SCLC. The marked differences in transcriptional diversity between patient tumors and model systems are likely to have implications in development of novel therapeutic agents.


Subject(s)
Lung Neoplasms , Neuroendocrine Tumors , Small Cell Lung Carcinoma , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/pathology , Neuroendocrine Tumors/genetics , Small Cell Lung Carcinoma/pathology , Transcription Factors/metabolism
6.
Cancer Cell ; 39(4): 566-579.e7, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33848478

ABSTRACT

Small cell neuroendocrine cancers (SCNCs) are recalcitrant cancers arising from diverse primary sites that lack effective treatments. Using chemical genetic screens, we identified inhibition of ataxia telangiectasia and rad3 related (ATR), the primary activator of the replication stress response, and topoisomerase I (TOP1), nuclear enzyme that suppresses genomic instability, as synergistically cytotoxic in small cell lung cancer (SCLC). In a proof-of-concept study, we combined M6620 (berzosertib), first-in-class ATR inhibitor, and TOP1 inhibitor topotecan in patients with relapsed SCNCs. Objective response rate among patients with SCLC was 36% (9/25), achieving the primary efficacy endpoint. Durable tumor regressions were observed in patients with platinum-resistant SCNCs, typically fatal within weeks of recurrence. SCNCs with high neuroendocrine differentiation, characterized by enhanced replication stress, were more likely to respond. These findings highlight replication stress as a potentially transformative vulnerability of SCNCs, paving the way for rational patient selection in these cancers, now treated as a single disease.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Isoxazoles/pharmacology , Lung Neoplasms/drug therapy , Neoplasm Recurrence, Local/drug therapy , Pyrazines/pharmacology , Small Cell Lung Carcinoma/drug therapy , Aged , Antineoplastic Agents/pharmacology , Ataxia Telangiectasia Mutated Proteins/genetics , DNA Replication/drug effects , DNA Topoisomerases, Type I/genetics , Genomic Instability/genetics , Humans , Lung Neoplasms/metabolism , Middle Aged , Neoplasm Recurrence, Local/metabolism , Protein Kinase Inhibitors/pharmacology , Signal Transduction/drug effects , Small Cell Lung Carcinoma/metabolism
7.
Sci Transl Med ; 13(578)2021 01 27.
Article in English | MEDLINE | ID: mdl-33504652

ABSTRACT

Because tobacco is a potent carcinogen, secondary causes of lung cancer are often diminished in perceived importance. To assess the extent of inherited susceptibility to small cell lung cancer (SCLC), the most lethal type of lung cancer, we sequenced germline exomes of 87 patients (77 SCLC and 10 extrapulmonary small cell) and considered 607 genes, discovering 42 deleterious variants in 35 cancer-predisposition genes among 43.7% of patients. These findings were validated in an independent cohort of 79 patients with SCLC. Loss of heterozygosity was observed in 3 of 14 (21.4%) tumors. Identification of variants influenced medical management and family member testing in nine (10.3%) patients. Unselected patients with SCLC were more likely to carry germline RAD51 paralog D (RAD51D), checkpoint kinase 1 (CHEK1), breast cancer 2 (BRCA2), and mutY DNA glycosylase (MUTYH) pathogenic variants than healthy controls. Germline genotype was significantly associated with the likelihood of a first-degree relative with cancer or lung cancer (odds ratio: 1.82, P = 0.008; and 2.60, P = 0.028), and longer recurrence-free survival after platinum-based chemotherapy (P = 0.002), independent of known prognostic factors. Treatment of a patient with relapsed SCLC and germline pathogenic mutation of BRCA1 interacting protein C-terminal helicase 1 (BRIP1), a homologous recombination-related gene, using agents synthetically lethal with homologous recombination deficiency, resulted in a notable disease response. This work demonstrates that SCLC, currently thought to result almost exclusively from tobacco exposure, may have an inherited predisposition and lays the groundwork for targeted therapies based on the genes involved.


Subject(s)
DNA Repair , Germ-Line Mutation , Lung Neoplasms , Small Cell Lung Carcinoma , BRCA1 Protein/genetics , BRCA2 Protein , Genetic Predisposition to Disease , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Neoplasm Recurrence, Local , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/genetics , Exome Sequencing
8.
Chest ; 158(4): 1723-1733, 2020 10.
Article in English | MEDLINE | ID: mdl-32464188

ABSTRACT

BACKGROUND: Small cell lung cancer (SCLC) has the strongest association with smoking among lung cancers. The characteristics of never smokers with SCLC is not known. RESEARCH QUESTION: Are the clinical characteristics, prognostic factors, survival, genomic alterations, and tumor mutational burdens of SCLC in patients who have never smoked different from those who have smoked? STUDY DESIGN AND METHODS: A retrospective multicenter cohort study of patients with clinician-confirmed SCLC was performed with the use of a longitudinal and nationally representative electronic medical records database. Smoking history was assessed through technology-enabled abstraction and confirmed for never smokers via chart review. Genomic characteristics of never smoker patients with SCLC were examined with the use of a next-generation sequencing-based gene panel and whole exome sequencing. RESULTS: One hundred of 5,632 patients (1.8%) with SCLC were never smokers. Relative to smokers, never smokers were more likely to be female (66.0% vs 52.4%; P = .009) and present with extensive stage (70.0% vs 62.2%; P = .028). Never smokers had a higher proportion of patients in age groups 35 to 49 years (7.0% vs 3.0%; P = .006) and ≥80 years (17.0% vs 8.2%; P = .006). Known risk factors for lung cancer were found in <20% of never smokers. There were no overall survival differences between never smokers and smokers. Among patients with available genomic data (n = 9), never smoker SCLC were characterized by lower tumor mutational burden, a lower frequency of TP53 mutations, and an absence of mutational signatures related to tobacco exposure. INTERPRETATION: The sex- and age-specific distribution of SCLC among never smokers, along with differences that were identified by genomic analyses, suggests a distinct biology of SCLC in never smokers compared with smokers.


Subject(s)
Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Small Cell Lung Carcinoma/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Genomics , Humans , Male , Middle Aged , Retrospective Studies , Small Cell Lung Carcinoma/diagnosis , Smoking
9.
J Thorac Oncol ; 14(8): 1447-1457, 2019 08.
Article in English | MEDLINE | ID: mdl-31063862

ABSTRACT

PURPOSE: Despite high tumor mutationburden, immune checkpoint blockade has limited efficacy in SCLC. We hypothesized that poly (ADP-ribose) polymerase inhibition could render SCLC more susceptible to immune checkpoint blockade. METHODS: A single-arm, phase II trial (NCT02484404) enrolled patients with relapsed SCLC who received durvalumab, 1500 mg every 4 weeks, and olaparib, 300 mg twice a day. The primary outcome was objective response rate. Correlative studies included mandatory collection of pretreatment and during-treatment biopsy specimens, which were assessed to define SCLC immunephenotypes: desert (CD8-positive T-cell prevalence low), excluded (CD8-positive T cells in stroma immediately adjacent/within tumor), and inflamed (CD8-positive T cells in direct contact with tumor). RESULTS: A total of 20 patients were enrolled. Their median age was 64 years, and most patients (60%) had platinum-resistant/refractory disease. Of 19 evaluable patients, two were observed to have partial or complete responses (10.5%), including a patient with EGFR-transformed SCLC. Clinical benefit was observed in four patients (21.1% [95% confidence interval: 6.1%-45.6%]) with confirmed responses or prolonged stable disease (≥8 months). The most common treatment-related adverse events were anemia (80%), lymphopenia (60%), and leukopenia (50%). Nine of 14 tumors (64%) exhibited an excluded phenotype; 21% and 14% of tumors exhibited the inflamed and desert phenotypes, respectively. Tumor responses were observed in all instances in which pretreatment tumors showed an inflamed phenotype. Of the five tumors without an inflamed phenotype at baseline, no during-treatment increase in T-cell infiltration or programmed death ligand 1 expression on tumor-infiltrating immune cells was observed. CONCLUSIONS: The study combination did not meet the preset bar for efficacy. Pretreatment and during-treatment biopsy specimens suggested that tumor immune phenotypes may be relevant for SCLC responses to immune checkpoint blockade combinations. The predictive value of preexisting CD8-positive T-cell infiltrates observed in this study needs to be confirmed in larger cohorts.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Lung Neoplasms/drug therapy , Phthalazines/therapeutic use , Piperazines/therapeutic use , Small Cell Lung Carcinoma/drug therapy , Adult , Aged , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Female , Humans , Lung Neoplasms/pathology , Male , Middle Aged , Phthalazines/pharmacology , Piperazines/pharmacology , Recurrence , Small Cell Lung Carcinoma/pathology
10.
SELECTION OF CITATIONS
SEARCH DETAIL
...