Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 179
Filter
1.
Semin Arthritis Rheum ; 69: 152554, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39298973

ABSTRACT

BACKGROUND: Activation of the complement cascade is thought to play a role in scleroderma vasculopathy. We previously showed that complement factor D was elevated in patients with limited cutaneous SSc and pulmonary arterial hypertension (PAH). In this study, we sought to assess multiple relevant components of the complement cascade to determine if they are altered in SSc-PAH, as well as their potential utility as biomarkers of disease severity and progression. METHODS: Complement components (n = 14) were measured using multiplex assays in 156 patients with SSc-PAH from a multi-site repository and were compared to 33 patients with SSc without PAH, and 40 healthy controls. Data were evaluated for correlations between complement levels, right heart catheterization measures, and clinical endpoints including 6-minute walk distance. To assess complement longitudinally, serum complement levels were assayed at 0, 4, 12, 24, 36 and 48 weeks in 52 SSc-PAH patients who participated in a prior clinical trial. RESULTS: We found that factor D was significantly elevated in SSc-PAH compared to SSc without PAH (p < 0.0001) and was highly sensitive and specific for SSc-PAH (AUC=0.82, p < 0.001). In SSc-PAH patients, alterations in factor H, C4, and factor D were associated with measures of PAH disease severity including right heart catheterization measurements (cardiac output, right atrial pressure, and VO2 max), survival, and 6-minute walk distance. No significant changes in complement levels or clinical associations were seen over time or associated with treatment in the longitudinal clinical trial study. CONCLUSION: Our work confirms prior studies demonstrating a role for complement activation in SSc vascular disease and elevations of factor D in a large SSc-PAH population. Further, factor H and other complement factors are associated with severity of PAH including mortality. Taken together, these findings suggest that the alternative complement pathway plays a role in SSc-PAH pathogenesis and may serve as a biomarker to inform diagnosis and prognosis.

2.
bioRxiv ; 2024 Sep 22.
Article in English | MEDLINE | ID: mdl-39345371

ABSTRACT

Rationale: Approximately 80% of patients with non-familial pulmonary arterial hypertension (PAH) lack identifiable pathogenic genetic variants. While most genetic studies of PAH have focused on predicted loss-of-function variants, recent approaches have identified ultra-rare missense variants associated with the disease. FOXF1 encodes a highly conserved transcription factor, essential for angiogenesis and vasculogenesis in human and mouse lungs. Objectives: We identified a rare FOXF1 missense coding variant in two unrelated probands with PAH. FOXF1 is an evolutionarily conserved transcription factor required for lung vascular development and vascular integrity. Our aims were to determine the frequency of FOXF1 variants in larger PAH cohorts compared to the general population, study FOXF1 expression in explanted lung tissue from PAH patients versus control (failed-donor) lungs, and define potential downstream targets linked to PAH development. Methods: Three independent, international, multicenter cohorts were analyzed to evaluate the frequency of FOXF1 rare variants. Various composite prediction models assessed the deleteriousness of individual variants. Bulk RNA sequencing datasets from human explanted lung tissues were compared to failed-donor controls to determine FOXF1 expression. Bioinformatic tools identified putative FOXF1 binding targets, which were orthogonally validated using mouse ChIP-seq datasets. Measurements and Main Results: Seven novel or ultra-rare missense coding variants were identified across three patient cohorts in different regions of the FOXF1 gene, including the DNA binding domain. FOXF1 expression was dysregulated in PAH lungs, correlating with disease severity. Histological analysis showed heterogeneous FOXF1 expression, with the lowest levels in phenotypically abnormal endothelial cells within complex vascular lesions in PAH samples. A hybrid bioinformatic approach identified FOXF1 downstream targets potentially involved in PAH pathogenesis, including BMPR2 . Conclusions: Large genomic and transcriptomic datasets suggest that decreased FOXF1 expression or predicted dysfunction is associated with PAH.

3.
Eur Respir J ; 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39209481

ABSTRACT

Considerable progress has been made in the genomics of pulmonary arterial hypertension (PAH) since the 6th World Symposium on Pulmonary Hypertension, with the identification of rare variants in several novel genes, as well as common variants that confer a modest increase in PAH risk. Gene and variant curation by an expert panel now provides a robust framework for knowing which genes to test and how to interpret variants in clinical practice. We recommend that genetic testing be offered to specific subgroups of symptomatic patients with PAH, and to children with certain types of group 3 pulmonary hypertension (PH). Testing of asymptomatic family members and the use of genetics in reproductive decision-making require the involvement of genetics experts. Large cohorts of PAH patients with biospecimens now exist and extension to non-group 1 PH has begun. However, these cohorts are largely of European origin; greater diversity will be essential to characterise the full extent of genomic variation contributing to PH risk and treatment responses. Other types of omics data are also being incorporated. Furthermore, to advance gene- and pathway-specific care and targeted therapies, gene-specific registries will be essential to support patients and their families and to lay the foundation for genetically informed clinical trials. This will require international outreach and collaboration between patients/families, clinicians and researchers. Ultimately, harmonisation of patient-derived biospecimens, clinical and omic information, and analytic approaches will advance the field.

4.
Circulation ; 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39167456

ABSTRACT

BACKGROUND: Integrative multiomics can elucidate pulmonary arterial hypertension (PAH) pathobiology, but procuring human PAH lung samples is rare. METHODS: We leveraged transcriptomic profiling and deep phenotyping of the largest multicenter PAH lung biobank to date (96 disease and 52 control) by integration with clinicopathologic data, genome-wide association studies, Bayesian regulatory networks, single-cell transcriptomics, and pharmacotranscriptomics. RESULTS: We identified 2 potentially protective gene network modules associated with vascular cells, and we validated ASPN, coding for asporin, as a key hub gene that is upregulated as a compensatory response to counteract PAH. We found that asporin is upregulated in lungs and plasma of multiple independent PAH cohorts and correlates with reduced PAH severity. We show that asporin inhibits proliferation and transforming growth factor-ß/phosphorylated SMAD2/3 signaling in pulmonary artery smooth muscle cells from PAH lungs. We demonstrate in Sugen-hypoxia rats that ASPN knockdown exacerbated PAH and recombinant asporin attenuated PAH. CONCLUSIONS: Our integrative systems biology approach to dissect the PAH lung transcriptome uncovered asporin as a novel protective target with therapeutic potential in PAH.

6.
Chest ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39154795

ABSTRACT

BACKGROUND: Risk assessment in pulmonary arterial hypertension (PAH) is fundamental to guiding treatment and improved outcomes. Clinical models are excellent at identifying high-risk patients, but leave uncertainty amongst moderate-risk patients. RESEARCH QUESTION: Can a multiple blood biomarker model of PAH, using previously described biomarkers, improve risk discrimination over current models? STUDY DESIGN AND METHODS: Using a multiplex enzyme-linked immunosorbent assay, we measured N-terminal fragment of the prohormone brain natriuretic peptide (NT-proBNP), soluble suppressor of tumorigenicity, IL-6, endostatin, galectin 3, HDGF, and insulin-like growth factor binding proteins (IGFBP1-7) in training (n = 1,623), test (n = 696), and validation (n = 237) cohorts. Clinical variables and biomarkers were evaluated by principal component analysis. NT-proBNP was not included to develop a model independent of NT-proBNP. Unsupervised k-means clustering classified participants into clusters. Transplant-free survival by cluster was examined using Kaplan-Meier and Cox proportional hazard regressions. Hazard by cluster was compared with NT-proBNP, Registry to Evaluate Early and Long-Term PAH Disease Management (REVEAL), and European Society of Cardiology (ESC) and European Respiratory Society (ERS) risk models alone and combined clinical and biomarker models. RESULTS: The algorithm generated 5 clusters with good risk discrimination using 6 biomarkers, weight, height, and age at PAH diagnosis. In the test and validation cohorts, the biomarker model alone performed equivalent to REVEAL (area under the receiver operating characteristic curve, 0.74). Adding the biomarker model to the ESC and ERS score and REVEAL score improved the ESC and ERS score and REVEAL score. The best overall model was the biomarker model adjusted for NT-proBNP with the best C statistic, Akaike information criterion, and calibration for the adjusted model compared with either the biomarker or NT-proBNP model alone. INTERPRETATION: A multibiomarker model alone was equivalent to current PAH clinical mortality risk prediction models and improved performance when combined and added to NT-proBNP. Clinical risk scores offer excellent predictive models, but require multiple tests; adding blood biomarkers to models can improve prediction or can enable more frequent, noninvasive monitoring of risk in PAH to support therapeutic decision-making.

7.
Respir Res ; 25(1): 235, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844967

ABSTRACT

BACKGROUND: Abnormal remodeling of distal pulmonary arteries in patients with pulmonary arterial hypertension (PAH) leads to progressively increased pulmonary vascular resistance, followed by right ventricular hypertrophy and failure. Despite considerable advancements in PAH treatment prognosis remains poor. We aim to evaluate the potential for using the cytokine resistin as a genetic and biological marker for disease severity and survival in a large cohort of patients with PAH. METHODS: Biospecimens, clinical, and genetic data for 1121 adults with PAH, including 808 with idiopathic PAH (IPAH) and 313 with scleroderma-associated PAH (SSc-PAH), were obtained from a national repository. Serum resistin levels were measured by ELISA, and associations between resistin levels, clinical variables, and single nucleotide polymorphism genotypes were examined with multivariable regression models. Machine-learning (ML) algorithms were applied to develop and compare risk models for mortality prediction. RESULTS: Resistin levels were significantly higher in all PAH samples and PAH subtype (IPAH and SSc-PAH) samples than in controls (P < .0001) and had significant discriminative abilities (AUCs of 0.84, 0.82, and 0.91, respectively; P < .001). High resistin levels (above 4.54 ng/mL) in PAH patients were associated with older age (P = .001), shorter 6-min walk distance (P = .001), and reduced cardiac performance (cardiac index, P = .016). Interestingly, mutant carriers of either rs3219175 or rs3745367 had higher resistin levels (adjusted P = .0001). High resistin levels in PAH patients were also associated with increased risk of death (hazard ratio: 2.6; 95% CI: 1.27-5.33; P < .0087). Comparisons of ML-derived survival models confirmed satisfactory prognostic value of the random forest model (AUC = 0.70, 95% CI: 0.62-0.79) for PAH. CONCLUSIONS: This work establishes the importance of resistin in the pathobiology of human PAH. In line with its function in rodent models, serum resistin represents a novel biomarker for PAH prognostication and may indicate a new therapeutic avenue. ML-derived survival models highlighted the importance of including resistin levels to improve performance. Future studies are needed to develop multi-marker assays that improve noninvasive risk stratification.


Subject(s)
Resistin , Severity of Illness Index , Humans , Male , Female , Resistin/blood , Middle Aged , Adult , Biomarkers/blood , Predictive Value of Tests , Pulmonary Arterial Hypertension/blood , Pulmonary Arterial Hypertension/diagnosis , Pulmonary Arterial Hypertension/mortality , Aged , Cohort Studies , Polymorphism, Single Nucleotide , Survival Rate/trends , Hypertension, Pulmonary/blood , Hypertension, Pulmonary/diagnosis , Hypertension, Pulmonary/mortality , Hypertension, Pulmonary/genetics
8.
Circulation ; 150(4): 302-316, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38695173

ABSTRACT

BACKGROUND: The ubiquitin-proteasome system regulates protein degradation and the development of pulmonary arterial hypertension (PAH), but knowledge about the role of deubiquitinating enzymes in this process is limited. UCHL1 (ubiquitin carboxyl-terminal hydrolase 1), a deubiquitinase, has been shown to reduce AKT1 (AKT serine/threonine kinase 1) degradation, resulting in higher levels. Given that AKT1 is pathological in pulmonary hypertension, we hypothesized that UCHL1 deficiency attenuates PAH development by means of reductions in AKT1. METHODS: Tissues from animal pulmonary hypertension models as well as human pulmonary artery endothelial cells from patients with PAH exhibited increased vascular UCHL1 staining and protein expression. Exposure to LDN57444, a UCHL1-specific inhibitor, reduced human pulmonary artery endothelial cell and smooth muscle cell proliferation. Across 3 preclinical PAH models, LDN57444-exposed animals, Uchl1 knockout rats (Uchl1-/-), and conditional Uchl1 knockout mice (Tie2Cre-Uchl1fl/fl) demonstrated reduced right ventricular hypertrophy, right ventricular systolic pressures, and obliterative vascular remodeling. Lungs and pulmonary artery endothelial cells isolated from Uchl1-/- animals exhibited reduced total and activated Akt with increased ubiquitinated Akt levels. UCHL1-silenced human pulmonary artery endothelial cells displayed reduced lysine(K)63-linked and increased K48-linked AKT1 levels. RESULTS: Supporting experimental data, we found that rs9321, a variant in a GC-enriched region of the UCHL1 gene, is associated with reduced methylation (n=5133), increased UCHL1 gene expression in lungs (n=815), and reduced cardiac index in patients (n=796). In addition, Gadd45α (an established demethylating gene) knockout mice (Gadd45α-/-) exhibited reduced lung vascular UCHL1 and AKT1 expression along with attenuated hypoxic pulmonary hypertension. CONCLUSIONS: Our findings suggest that UCHL1 deficiency results in PAH attenuation by means of reduced AKT1, highlighting a novel therapeutic pathway in PAH.


Subject(s)
Mice, Knockout , Proto-Oncogene Proteins c-akt , Ubiquitin Thiolesterase , Animals , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/deficiency , Ubiquitin Thiolesterase/metabolism , Humans , Mice , Rats , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Male , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/genetics , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/enzymology , Rats, Sprague-Dawley , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/etiology , Vascular Remodeling , Cells, Cultured , Cell Proliferation , Mice, Inbred C57BL , Indoles , Oximes
9.
Elife ; 122024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652113

ABSTRACT

Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4, but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here, we identify the domains of LRMP essential for this regulation, show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating, and demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we identified the initial 227 residues of LRMP and the N-terminus of HCN4 as necessary for LRMP to associate with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. Finally, we demonstrated that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of five residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating, most likely via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.


Subject(s)
Cyclic AMP , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels , Membrane Proteins , Muscle Proteins , Receptors, Cytoplasmic and Nuclear , Signal Transduction , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/chemistry , Cyclic AMP/metabolism , Humans , Membrane Proteins/metabolism , Membrane Proteins/genetics , Animals , Protein Binding , HEK293 Cells , Potassium Channels/metabolism , Potassium Channels/genetics , Potassium Channels/chemistry , Patch-Clamp Techniques , Fluorescence Resonance Energy Transfer , Protein Isoforms/metabolism , Protein Isoforms/genetics
10.
bioRxiv ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38464060

ABSTRACT

Vascular inflammation critically regulates endothelial cell (EC) pathophenotypes, particularly in pulmonary arterial hypertension (PAH). Dysregulation of lysosomal activity and cholesterol metabolism have known inflammatory roles in disease, but their relevance to PAH is unclear. In human pulmonary arterial ECs and in PAH, we found that inflammatory cytokine induction of the nuclear receptor coactivator 7 (NCOA7) both preserved lysosomal acidification and served as a homeostatic brake to constrain EC immunoactivation. Conversely, NCOA7 deficiency promoted lysosomal dysfunction and proinflammatory oxysterol/bile acid generation that, in turn, contributed to EC pathophenotypes. In vivo, mice deficient for Ncoa7 or exposed to the inflammatory bile acid 7α-hydroxy-3-oxo-4-cholestenoic acid (7HOCA) displayed worsened PAH. Emphasizing this mechanism in human PAH, an unbiased, metabolome-wide association study (N=2,756) identified a plasma signature of the same NCOA7-dependent oxysterols/bile acids associated with PAH mortality (P<1.1x10-6). Supporting a genetic predisposition to NCOA7 deficiency, in genome-edited, stem cell-derived ECs, the common variant intronic SNP rs11154337 in NCOA7 regulated NCOA7 expression, lysosomal activity, oxysterol/bile acid production, and EC immunoactivation. Correspondingly, SNP rs11154337 was associated with PAH severity via six-minute walk distance and mortality in discovery (N=93, P=0.0250; HR=0.44, 95% CI [0.21-0.90]) and validation (N=630, P=2x10-4; HR=0.49, 95% CI [0.34-0.71]) cohorts. Finally, utilizing computational modeling of small molecule binding to NCOA7, we predicted and synthesized a novel activator of NCOA7 that prevented EC immunoactivation and reversed indices of rodent PAH. In summary, we have established a genetic and metabolic paradigm and a novel therapeutic agent that links lysosomal biology as well as oxysterol and bile acid processes to EC inflammation and PAH pathobiology. This paradigm carries broad implications for diagnostic and therapeutic development in PAH and in other conditions dependent upon acquired and innate immune regulation of vascular disease.

11.
bioRxiv ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38328113

ABSTRACT

Pulmonary arterial hypertension (PAH) is a rare and fatal vascular disease with heterogeneous clinical manifestations. To date, molecular determinants underlying the development of PAH and related outcomes remain poorly understood. Herein, we identify pulmonary primary oxysterol and bile acid synthesis (PPOBAS) as a previously unrecognized pathway central to PAH pathophysiology. Mass spectrometry analysis of 2,756 individuals across five independent studies revealed 51 distinct circulating metabolites that predicted PAH-related mortality and were enriched within the PPOBAS pathway. Across independent single-center PAH studies, PPOBAS pathway metabolites were also associated with multiple cardiopulmonary measures of PAH-specific pathophysiology. Furthermore, PPOBAS metabolites were found to be increased in human and rodent PAH lung tissue and specifically produced by pulmonary endothelial cells, consistent with pulmonary origin. Finally, a poly-metabolite risk score comprising 13 PPOBAS molecules was found to not only predict PAH-related mortality but also outperform current clinical risk scores. This work identifies PPOBAS as specifically altered within PAH and establishes needed prognostic biomarkers for guiding therapy in PAH.

12.
Sci Transl Med ; 16(729): eadd2029, 2024 01 10.
Article in English | MEDLINE | ID: mdl-38198571

ABSTRACT

Hypoxic reprogramming of vasculature relies on genetic, epigenetic, and metabolic circuitry, but the control points are unknown. In pulmonary arterial hypertension (PAH), a disease driven by hypoxia inducible factor (HIF)-dependent vascular dysfunction, HIF-2α promoted expression of neighboring genes, long noncoding RNA (lncRNA) histone lysine N-methyltransferase 2E-antisense 1 (KMT2E-AS1) and histone lysine N-methyltransferase 2E (KMT2E). KMT2E-AS1 stabilized KMT2E protein to increase epigenetic histone 3 lysine 4 trimethylation (H3K4me3), driving HIF-2α-dependent metabolic and pathogenic endothelial activity. This lncRNA axis also increased HIF-2α expression across epigenetic, transcriptional, and posttranscriptional contexts, thus promoting a positive feedback loop to further augment HIF-2α activity. We identified a genetic association between rs73184087, a single-nucleotide variant (SNV) within a KMT2E intron, and disease risk in PAH discovery and replication patient cohorts and in a global meta-analysis. This SNV displayed allele (G)-specific association with HIF-2α, engaged in long-range chromatin interactions, and induced the lncRNA-KMT2E tandem in hypoxic (G/G) cells. In vivo, KMT2E-AS1 deficiency protected against PAH in mice, as did pharmacologic inhibition of histone methylation in rats. Conversely, forced lncRNA expression promoted more severe PH. Thus, the KMT2E-AS1/KMT2E pair orchestrates across convergent multi-ome landscapes to mediate HIF-2α pathobiology and represents a key clinical target in pulmonary hypertension.


Subject(s)
Hypertension, Pulmonary , RNA, Long Noncoding , Humans , Rats , Animals , Mice , Alleles , Hypertension, Pulmonary/genetics , Histones , RNA, Long Noncoding/genetics , Rodentia , Lysine , Familial Primary Pulmonary Hypertension , Hypoxia/genetics , Methyltransferases , Basic Helix-Loop-Helix Transcription Factors/genetics
13.
bioRxiv ; 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-37693562

ABSTRACT

Lymphoid restricted membrane protein (LRMP) is a specific regulator of the hyperpolarization-activated cyclic nucleotide-sensitive isoform 4 (HCN4) channel. LRMP prevents cAMP-dependent potentiation of HCN4 but the interaction domains, mechanisms of action, and basis for isoform-specificity remain unknown. Here we identify the domains of LRMP essential for regulation. We show that LRMP acts by disrupting the intramolecular signal transduction between cyclic nucleotide binding and gating. And we demonstrate that multiple unique regions in HCN4 are required for LRMP isoform-specificity. Using patch clamp electrophysiology and Förster resonance energy transfer (FRET), we showed that the initial 227 residues of LRMP and the N-terminus of HCN4 are necessary for LRMP to interact with HCN4. We found that the HCN4 N-terminus and HCN4-specific residues in the C-linker are necessary for regulation of HCN4 by LRMP. And we demonstrate that LRMP-regulation can be conferred to HCN2 by addition of the HCN4 N-terminus along with mutation of 5 residues in the S5 region and C-linker to the cognate HCN4 residues. Taken together, these results suggest that LRMP inhibits HCN4 through an isoform-specific interaction involving the N-terminals of both proteins that prevents the transduction of cAMP binding into a change in channel gating via an HCN4-specific orientation of the N-terminus, C-linker, and S4-S5 linker.

14.
Pulm Circ ; 13(3): e12284, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37674873

ABSTRACT

Insulin-like growth factor (IGF) binding proteins (IGFBPs) are a family of growth factor modifiers, some of which are known to be independently associated with pulmonary arterial hypertension (PAH) survival. IGF factor binding protein 7 (IGFBP7) is a unique low-affinity IGFBP that, independent of IGF, stimulates prostacyclin production. This study proposed to establish associations between IGFBP7 and PAH severity and survival, using enrollment and longitudinal samples. Serum IGFBP7 levels were significantly elevated in patients with PAH compared to controls. After adjusting for age and sex, logarithmic increases in IGFBP7 were associated with a 20 m shorter six-minute walk distance (6MWD; p < 0.001), a 2-3 mmHg higher mean right atrial pressure (p < 0.001 and 0.02), and a higher likelihood of a greater REVEAL 2.0 risk category placement (p < 0.001). Kaplan-Meier analysis demonstrated significantly decreased survival with IGFBP7 above the median and Cox multivariable analysis adjusted for age and sex, demonstrated higher serum IGFBP7 was an independent predictor of survival. Though the exact mechanism is still unknown, given IGFBP7's role as a prostacyclin stimulant, it has potential use as a therapeutic target for disease modulation.

15.
Commun Biol ; 6(1): 826, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558836

ABSTRACT

Portopulmonary hypertension (PoPH) is a type of pulmonary vascular disease due to portal hypertension that exhibits high morbidity and mortality. The mechanisms driving disease are unknown, and transcriptional characteristics unique to the PoPH liver remain unexplored. Here, we apply single nuclear RNA sequencing to compare cirrhotic livers from patients with and without PoPH. We identify characteristics unique to PoPH in cells surrounding the central hepatic vein, including increased growth differentiation factor signaling, enrichment of the arginine biosynthesis pathway, and differential expression of the bone morphogenic protein type II receptor and estrogen receptor type I genes. These results provide insight into the transcriptomic characteristics of the PoPH liver and mechanisms by which PoPH cellular dysfunction might contribute to pulmonary vascular remodeling.


Subject(s)
Hypertension, Portal , Hypertension, Pulmonary , Liver Transplantation , Pulmonary Arterial Hypertension , Humans , Arginine , Hypertension, Pulmonary/genetics , Hypertension, Portal/genetics , Pulmonary Arterial Hypertension/genetics , Estrogens , Bone Morphogenetic Protein Receptors, Type II/genetics , Growth Differentiation Factor 15
16.
Metabolites ; 13(7)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37512509

ABSTRACT

High-dimensional metabolomics analyses may identify convergent and divergent markers, potentially representing aligned or orthogonal disease pathways that underly conditions such as pulmonary arterial hypertension (PAH). Using a comprehensive PAH metabolomics dataset, we applied six different conventional and statistical learning techniques to identify analytes associated with key outcomes and compared the results. We found that certain conventional techniques, such as Bonferroni/FDR correction, prioritized metabolites that tended to be highly intercorrelated. Statistical learning techniques generally agreed with conventional techniques on the top-ranked metabolites, but were also more inclusive of different metabolite groups. In particular, conventional methods prioritized sterol and oxylipin metabolites in relation to idiopathic versus non-idiopathic PAH, whereas statistical learning methods tended to prioritize eicosanoid, bile acid, fatty acid, and fatty acyl ester metabolites. Our findings demonstrate how conventional and statistical learning techniques can offer both concordant or discordant results. In the case of a rare yet morbid condition, such as PAH, convergent metabolites may reflect common pathways to shared disease outcomes whereas divergent metabolites could signal either distinct etiologic mechanisms, different sub-phenotypes, or varying stages of disease progression. Notwithstanding the need to investigate the mechanisms underlying the observed results, our main findings suggest that a multi-method approach to statistical analyses of high-dimensional human metabolomics datasets could effectively broaden the scientific yield from a given study design.

17.
Pulm Circ ; 13(2): e12235, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37152104

ABSTRACT

Proteomic analysis of patients with pulmonary arterial hypertension (PAH) has demonstrated significant abnormalities in the insulin-like growth factor axis (IGF). This study proposed to establish associations between a specific binding protein, insulin-like growth factor binding protein 4 (IGFBP4), and PAH severity as well as survival across varying study cohorts. In all cohorts studied, serum IGFBP4 levels were significantly elevated in PAH compared to controls (p < 0.0001). IGFBP4 concentration was also highest in the connective tissue-associated PAH (CTD-PAH) and idiopathic PAH subtypes (876 and 784 ng/mL, median, respectively). After adjustment for age and sex, IGFBP4 was significantly associated with worse PAH severity as defined by a decreased 6-min walk distance (6MWD), New York heart association functional class (NYHA-FC), REVEAL 2.0 score and higher right atrial pressures. In longitudinal analysis provided by one of the study cohorts, IGFBP4 was prospectively significantly associated with a shorter 6MWD, worse NYHA-FC classification, and decreased survival. Cox multivariable analysis demonstrated higher serum IGFBP4 as an independent predictor of survival in the overall PAHB cohort. Therefore, this study established that higher circulating IGFBP4 levels were significantly associated with worse PAH severity, decreased survival and disease progression. Dysregulation of IGF metabolism/growth axis may play a significant role in PAH cardio-pulmonary pathobiology.

18.
Pulm Circ ; 13(2): e12227, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37101805

ABSTRACT

Pulmonary hypertension (PH) is associated with significant morbidity and mortality. RASA3 is a GTPase activating protein integral to angiogenesis and endothelial barrier function. In this study, we explore the association of RASA3 genetic variation with PH risk in patients with sickle cell disease (SCD)-associated PH and pulmonary arterial hypertension (PAH). Cis-expression quantitative trait loci (eQTL) were queried for RASA3 using whole genome genotype arrays and gene expression profiles derived from peripheral blood mononuclear cells (PBMC) of three SCD cohorts. Genome-wide single nucleotide polymorphisms (SNPs) near or in the RASA3 gene that may associate with lung RASA3 expression were identified, reduced to 9 tagging SNPs for RASA3 and associated with markers of PH. Associations between the top RASA3 SNP and PAH severity were corroborated using data from the PAH Biobank and analyzed based on European or African ancestry (EA, AA). We found that PBMC RASA3 expression was lower in patients with SCD-associated PH as defined by echocardiography and right heart catheterization and was associated with higher mortality. One eQTL for RASA3 (rs9525228) was identified, with the risk allele correlating with PH risk, higher tricuspid regurgitant jet velocity and higher pulmonary vascular resistance in patients with SCD-associated PH. rs9525228 associated with markers of precapillary PH and decreased survival in individuals of EA but not AA. In conclusion, RASA3 is a novel candidate gene in SCD-associated PH and PAH, with RASA3 expression appearing to be protective. Further studies are ongoing to delineate the role of RASA3 in PH.

19.
Am J Respir Crit Care Med ; 207(8): 1055-1069, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36913491

ABSTRACT

Rationale: Genetic studies suggest that SOX17 (SRY-related HMG-box 17) deficiency increases pulmonary arterial hypertension (PAH) risk. Objectives: On the basis of pathological roles of estrogen and HIF2α (hypoxia-inducible factor 2α) signaling in pulmonary artery endothelial cells (PAECs), we hypothesized that SOX17 is a target of estrogen signaling that promotes mitochondrial function and attenuates PAH development via HIF2α inhibition. Methods: We used metabolic (Seahorse) and promoter luciferase assays in PAECs together with the chronic hypoxia murine model to test the hypothesis. Measurements and Main Results: Sox17 expression was reduced in PAH tissues (rodent models and from patients). Chronic hypoxic pulmonary hypertension was exacerbated by mice with conditional Tie2-Sox17 (Sox17EC-/-) deletion and attenuated by transgenic Tie2-Sox17 overexpression (Sox17Tg). On the basis of untargeted proteomics, metabolism was the top pathway altered by SOX17 deficiency in PAECs. Mechanistically, we found that HIF2α concentrations were increased in the lungs of Sox17EC-/- and reduced in those from Sox17Tg mice. Increased SOX17 promoted oxidative phosphorylation and mitochondrial function in PAECs, which were partly attenuated by HIF2α overexpression. Rat lungs in males displayed higher Sox17 expression versus females, suggesting repression by estrogen signaling. Supporting 16α-hydroxyestrone (16αOHE; a pathologic estrogen metabolite)-mediated repression of SOX17 promoter activity, Sox17Tg mice attenuated 16αOHE-mediated exacerbations of chronic hypoxic pulmonary hypertension. Finally, in adjusted analyses in patients with PAH, we report novel associations between a SOX17 risk variant, rs10103692, and reduced plasma citrate concentrations (n = 1,326). Conclusions: Cumulatively, SOX17 promotes mitochondrial bioenergetics and attenuates PAH, in part, via inhibition of HIF2α. 16αOHE mediates PAH development via downregulation of SOX17, linking sexual dimorphism and SOX17 genetics in PAH.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Male , Rats , Female , Mice , Animals , Hypertension, Pulmonary/metabolism , Endothelial Cells/metabolism , Lung , Pulmonary Artery , Hypoxia/complications , Estrogens , Pulmonary Arterial Hypertension/metabolism , Familial Primary Pulmonary Hypertension/complications , HMGB Proteins/metabolism , SOXF Transcription Factors/genetics
20.
bioRxiv ; 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36712057

ABSTRACT

Pulmonary arterial hypertension (PAH) remains an incurable and often fatal disease despite currently available therapies. Multiomics systems biology analysis can shed new light on PAH pathobiology and inform translational research efforts. Using RNA sequencing on the largest PAH lung biobank to date (96 disease and 52 control), we aim to identify gene co-expression network modules associated with PAH and potential therapeutic targets. Co-expression network analysis was performed to identify modules of co-expressed genes which were then assessed for and prioritized by importance in PAH, regulatory role, and therapeutic potential via integration with clinicopathologic data, human genome-wide association studies (GWAS) of PAH, lung Bayesian regulatory networks, single-cell RNA-sequencing data, and pharmacotranscriptomic profiles. We identified a co-expression module of 266 genes, called the pink module, which may be a response to the underlying disease process to counteract disease progression in PAH. This module was associated not only with PAH severity such as increased PVR and intimal thickness, but also with compensated PAH such as lower number of hospitalizations, WHO functional class and NT-proBNP. GWAS integration demonstrated the pink module is enriched for PAH-associated genetic variation in multiple cohorts. Regulatory network analysis revealed that BMPR2 regulates the main target of FDA-approved riociguat, GUCY1A2, in the pink module. Analysis of pathway enrichment and pink hub genes (i.e. ANTXR1 and SFRP4) suggests the pink module inhibits Wnt signaling and epithelial-mesenchymal transition. Cell type deconvolution showed the pink module correlates with higher vascular cell fractions (i.e. myofibroblasts). A pharmacotranscriptomic screen discovered ubiquitin-specific peptidases (USPs) as potential therapeutic targets to mimic the pink module signature. Our multiomics integrative study uncovered a novel gene subnetwork associated with clinicopathologic severity, genetic risk, specific vascular cell types, and new therapeutic targets in PAH. Future studies are warranted to investigate the role and therapeutic potential of the pink module and targeting USPs in PAH.

SELECTION OF CITATIONS
SEARCH DETAIL