Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Ther ; 260: 108681, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38897295

ABSTRACT

Our skin protects us from external threats including ultraviolet radiation, pathogens and chemicals, and prevents excessive trans-epidermal water loss. These varied activities are reliant on a vast array of lipids, many of which are unique to skin, and that support physical, microbiological and immunological barriers. The cutaneous physical barrier is dependent on a specific lipid matrix that surrounds terminally-differentiated keratinocytes in the stratum corneum. Sebum- and keratinocyte-derived lipids cover the skin's surface and support and regulate the skin microbiota. Meanwhile, lipids signal between resident and infiltrating cutaneous immune cells, driving inflammation and its resolution in response to pathogens and other threats. Lipids of particular importance include ceramides, which are crucial for stratum corneum lipid matrix formation and therefore physical barrier functionality, fatty acids, which contribute to the acidic pH of the skin surface and regulate the microbiota, as well as the stratum corneum lipid matrix, and bioactive metabolites of these fatty acids, involved in cell signalling, inflammation, and numerous other cutaneous processes. These diverse and complex lipids maintain homeostasis in healthy skin, and are implicated in many cutaneous diseases, as well as unrelated systemic conditions with skin manifestations, and processes such as ageing. Lipids also contribute to the gut-skin axis, signalling between the two barrier sites. Therefore, skin lipids provide a valuable resource for exploration of healthy cutaneous processes, local and systemic disease development and progression, and accessible biomarker discovery for systemic disease, as well as an opportunity to fully understand the relationship between the host and the skin microbiota. Investigation of skin lipids could provide diagnostic and prognostic biomarkers, and help identify new targets for interventions. Development and improvement of existing in vitro and in silico approaches to explore the cutaneous lipidome, as well as advances in skin lipidomics technologies, will facilitate ongoing progress in skin lipid research.


Subject(s)
Lipids , Skin Diseases , Skin , Humans , Animals , Skin Diseases/metabolism , Skin/metabolism , Skin/microbiology , Lipid Metabolism , Keratinocytes/metabolism , Microbiota/physiology
2.
Mol Omics ; 20(7): 453-468, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38860509

ABSTRACT

Eicosanoids are a family of bioactive lipids, including derivatives of the ubiquitous fatty acid arachidonic acid (AA). The intimate involvement of eicosanoids in inflammation motivates the development of predictive in silico models for a systems-level exploration of disease mechanisms, drug development and replacement of animal models. Using an ensemble modelling strategy, we developed a computational model of the AA cascade. This approach allows the visualisation of plausible and thermodynamically feasible predictions, overcoming the limitations of fixed-parameter modelling. A quality scoring method was developed to quantify the accuracy of ensemble predictions relative to experimental data, measuring the overall uncertainty of the process. Monte Carlo ensemble modelling was used to quantify the prediction confidence levels. Model applicability was demonstrated using mass spectrometry mediator lipidomics to measure eicosanoids produced by HaCaT epidermal keratinocytes and 46BR.1N dermal fibroblasts, treated with stimuli (calcium ionophore A23187), (ultraviolet radiation, adenosine triphosphate) and a cyclooxygenase inhibitor (indomethacin). Experimentation and predictions were in good qualitative agreement, demonstrating the ability of the model to be adapted to cell types exhibiting differences in AA release and enzyme concentration profiles. The quantitative agreement between experimental and predicted outputs could be improved by expanding network topology to include additional reactions. Overall, our approach generated an adaptable, tuneable ensemble model of the AA cascade that can be tailored to represent different cell types and demonstrated that the integration of in silico and in vitro methods can facilitate a greater understanding of complex biological networks such as the AA cascade.


Subject(s)
Arachidonic Acid , Computer Simulation , Keratinocytes , Arachidonic Acid/metabolism , Humans , Keratinocytes/metabolism , Lipidomics/methods , Monte Carlo Method , Eicosanoids/metabolism , Models, Biological , Fibroblasts/metabolism , Cell Line , Calcimycin/pharmacology
3.
Prog Lipid Res ; 95: 101276, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38697517

ABSTRACT

Oxylipins are potent lipid mediators with increasing interest in clinical research. They are usually measured in systemic circulation and can provide a wealth of information regarding key biological processes such as inflammation, vascular tone, or blood coagulation. Although procedures still require harmonization to generate comparable oxylipin datasets, performing comprehensive profiling of circulating oxylipins in large studies is feasible and no longer restricted by technical barriers. However, it is essential to improve and facilitate the biological interpretation of complex oxylipin profiles to truly leverage their potential in clinical research. This requires regular updating of our knowledge about the metabolism and the mode of action of oxylipins, and consideration of all factors that may influence circulating oxylipin profiles independently of the studied disease or condition. This review aims to provide the readers with updated and necessary information regarding oxylipin metabolism, their different forms in systemic circulation, the current limitations in deducing oxylipin cellular effects from in vitro bioactivity studies, the biological and technical confounding factors needed to consider for a proper interpretation of oxylipin profiles.

4.
Nat Commun ; 15(1): 4326, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773113

ABSTRACT

Resolving inflammation is thought to return the affected tissue back to homoeostasis but recent evidence supports a non-linear model of resolution involving a phase of prolonged immune activity. Here we show that within days following resolution of Streptococcus pneumoniae-triggered lung inflammation, there is an influx of antigen specific lymphocytes with a memory and tissue-resident phenotype as well as macrophages bearing alveolar or interstitial phenotype. The transcriptome of these macrophages shows enrichment of genes associated with prostaglandin biosynthesis and genes that drive T cell chemotaxis and differentiation. Therapeutic depletion of post-resolution macrophages, inhibition of prostaglandin E2 (PGE2) synthesis or treatment with an EP4 antagonist, MF498, reduce numbers of lung CD4+/CD44+/CD62L+ and CD4+/CD44+/CD62L-/CD27+ T cells as well as their expression of the α-integrin, CD103. The T cells fail to reappear and reactivate upon secondary challenge for up to six weeks following primary infection. Concomitantly, EP4 antagonism through MF498 causes accumulation of lung macrophages and marked tissue fibrosis. Our study thus shows that PGE2 signalling, predominantly via EP4, plays an important role during the second wave of immune activity following resolution of inflammation. This secondary immune activation drives local tissue-resident T cell development while limiting tissue injury.


Subject(s)
Macrophages , Pneumonia, Pneumococcal , Streptococcus pneumoniae , Male , Mice , Dinoprostone/antagonists & inhibitors , Dinoprostone/metabolism , Fibrosis , Inflammation/immunology , Inflammation/pathology , Lung/immunology , Lung/microbiology , Lung/pathology , Lymphocytes/cytology , Lymphocytes/immunology , Macrophages/cytology , Macrophages/immunology , Macrophages, Alveolar/cytology , Macrophages, Alveolar/immunology , Mice, Inbred C57BL , Phagocytes/cytology , Phagocytes/immunology , Pneumonia, Pneumococcal/immunology , Pneumonia, Pneumococcal/pathology , Prostaglandins/biosynthesis , Quinolines/administration & dosage , Streptococcus pneumoniae/physiology , Sulfonamides/administration & dosage , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Transcriptome , Animals
SELECTION OF CITATIONS
SEARCH DETAIL