Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(3)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36772299

ABSTRACT

Intelligent Transportation Systems (ITSs) are systems that aim to provide innovative services for road users in order to improve traffic efficiency, mobility and safety. This aspect of safety is of utmost importance for Vulnerable Road Users (VRUs), as these users are typically more exposed to dangerous situations, and their vehicles also possess poorer safety mechanisms when in comparison to regular vehicles on the road. Implementing automatic safety solutions for VRU vehicles is challenging since they have high agility and it can be difficult to anticipate their behavior. However, if equipped with communication capabilities, the generated Vehicle-to-Anything (V2X) data can be leveraged by Machine Learning (ML) mechanisms in order to implement such automatic systems. This work proposes a VRU (motorcyclist) collision prediction system, utilizing stacked unidirectional Long Short-Term Memorys (LSTMs) on top of communication data that is generated using the VEINS simulation framework (coupling the Simulation of Urban MObility (SUMO) and Network Simulator 3 (ns-3) tools). The proposed system performed well in two different scenarios: in Scenario A, it predicted 96% of the collisions, averaging 4.53 s for Average Prediction Time (s) (APT) and with a Correct Decision Percentage (CDP) of 41% and 78 False Positives (FPs); in Scenario B, it predicted 95% of the collisions, with a 4.44 s APT, while the CDP was 43% with 68 FPs. The results show the effectiveness of the approach: using ML methods on V2X data allowed the prediction of most of the simulated accidents. Nonetheless, the presence of a relatively high number of FPs does not allow for the usage of automatic safety features (e.g., emergency breaking in the passenger vehicles); thus, collision avoidance must be achieved manually by the drivers.

2.
Sensors (Basel) ; 18(2)2018 Feb 06.
Article in English | MEDLINE | ID: mdl-29415508

ABSTRACT

The development of indoor positioning solutions using smartphones is a growing activity with an enormous potential for everyday life and professional applications. The research activities on this topic concentrate on the development of new positioning solutions that are tested in specific environments under their own evaluation metrics. To explore the real positioning quality of smartphone-based solutions and their capabilities for seamlessly adapting to different scenarios, it is needed to find fair evaluation frameworks. The design of competitions using extensive pre-recorded datasets is a valid way to generate open data for comparing the different solutions created by research teams. In this paper, we discuss the details of the 2017 IPIN indoor localization competition, the different datasets created, the teams participating in the event, and the results they obtained. We compare these results with other competition-based approaches (Microsoft and Perf-loc) and on-line evaluation web sites. The lessons learned by organising these competitions and the benefits for the community are addressed along the paper. Our analysis paves the way for future developments on the standardization of evaluations and for creating a widely-adopted benchmark strategy for researchers and companies in the field.

3.
Sensors (Basel) ; 17(3)2017 Mar 10.
Article in English | MEDLINE | ID: mdl-28287447

ABSTRACT

This paper presents the analysis and discussion of the off-site localization competition track, which took place during the Seventh International Conference on Indoor Positioning and Indoor Navigation (IPIN 2016). Five international teams proposed different strategies for smartphone-based indoor positioning using the same reference data. The competitors were provided with several smartphone-collected signal datasets, some of which were used for training (known trajectories), and others for evaluating (unknown trajectories). The competition permits a coherent evaluation method of the competitors' estimations, where inside information to fine-tune their systems is not offered, and thus provides, in our opinion, a good starting point to introduce a fair comparison between the smartphone-based systems found in the literature. The methodology, experience, feedback from competitors and future working lines are described.

SELECTION OF CITATIONS
SEARCH DETAIL