Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674677

ABSTRACT

DNA sequence variants (single nucleotide polymorphisms or variants, SNPs/SNVs; copy number variants, CNVs) associated to neurodevelopmental disorders (NDD) and traits often map on putative transcriptional regulatory elements, including, in particular, enhancers. However, the genes controlled by these enhancers remain poorly defined. Traditionally, the activity of a given enhancer, and the effect of its possible alteration associated to the sequence variants, has been thought to influence the nearest gene promoter. However, the obtainment of genome-wide long-range interaction maps in neural cells chromatin challenged this view, showing that a given enhancer is very frequently not connected to the nearest promoter, but to a more distant one, skipping genes in between. In this Perspective, we review some recent papers, who generated long-range interaction maps (by HiC, RNApolII ChIA-PET, Capture-HiC, or PLACseq), and overlapped the identified long-range interacting DNA segments with DNA sequence variants associated to NDD (such as schizophrenia, bipolar disorder and autism) and traits (intelligence). This strategy allowed to attribute the function of enhancers, hosting the NDD-related sequence variants, to a connected gene promoter lying far away on the linear chromosome map. Some of these enhancer-connected genes had indeed been already identified as contributive to the diseases, by the identification of mutations within the gene's protein-coding regions (exons), validating the approach. Significantly, however, the connected genes also include many genes that were not previously found mutated in their exons, pointing to novel candidate contributors to NDD and traits. Thus, long-range interaction maps, in combination with DNA variants detected in association with NDD, can be used as "pointers" to identify novel candidate disease-relevant genes. Functional manipulation of the long-range interaction network involving enhancers and promoters by CRISPR-Cas9-based approaches is beginning to probe for the functional significance of the identified interactions, and the enhancers and the genes involved, improving our understanding of neural development and its pathology.


Subject(s)
Chromatin , Neurodevelopmental Disorders , Humans , Chromatin/genetics , Enhancer Elements, Genetic , DNA , Promoter Regions, Genetic , Neurodevelopmental Disorders/genetics , Genome-Wide Association Study
2.
Mol Cell Endocrinol ; 563: 111864, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36690169

ABSTRACT

Prenatal exposure to synthetic glucocorticoids (sGCs) reprograms brain development and predisposes the developing fetus towards potential adverse neurodevelopmental outcomes. Using a mouse model of sGC administration, previous studies show that these changes are accompanied by sexually dimorphic alterations in the transcriptome of neural stem and progenitor cells (NSPCs) derived from the embryonic telencephalon. Because cell type-specific gene expression profiles tightly regulate cell fate decisions and are controlled by a flexible landscape of chromatin domains upon which transcription factors and enhancer elements act, we multiplexed data from four genome-wide assays: RNA-seq, ATAC-seq (assay for transposase accessible chromatin followed by genome wide sequencing), dual cross-linking ChIP-seq (chromatin immunoprecipitation followed by genome wide sequencing), and microarray gene expression to identify novel relationships between gene regulation, chromatin structure, and genomic glucocorticoid receptor (GR) action in NSPCs. These data reveal that GR binds preferentially to predetermined regions of accessible chromatin to influence gene programming and cell fate decisions. In addition, we identify SOX2 as a transcription factor that impacts the genomic response of select GR target genes to sGCs (i.e., dexamethasone) in NSPCs.


Subject(s)
Glucocorticoids , Neural Stem Cells , Female , Pregnancy , Chromatin/metabolism , Gene Expression Regulation , Genomics , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Neural Stem Cells/metabolism , Receptors, Glucocorticoid/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Animals , Mice , Mouse Embryonic Stem Cells
3.
Cells ; 11(10)2022 05 10.
Article in English | MEDLINE | ID: mdl-35626641

ABSTRACT

SOX2 is a transcription factor conserved throughout vertebrate evolution, whose expression marks the central nervous system from the earliest developmental stages. In humans, SOX2 mutation leads to a spectrum of CNS defects, including vision and hippocampus impairments, intellectual disability, and motor control problems. Here, we review how conditional Sox2 knockout (cKO) in mouse with different Cre recombinases leads to very diverse phenotypes in different regions of the developing and postnatal brain. Surprisingly, despite the widespread expression of Sox2 in neural stem/progenitor cells of the developing neural tube, some regions (hippocampus, ventral forebrain) appear much more vulnerable than others to Sox2 deletion. Furthermore, the stage of Sox2 deletion is also a critical determinant of the resulting defects, pointing to a stage-specificity of SOX2 function. Finally, cKOs illuminate the importance of SOX2 function in different cell types according to the different affected brain regions (neural precursors, GABAergic interneurons, glutamatergic projection neurons, Bergmann glia). We also review human genetics data regarding the brain defects identified in patients carrying mutations within human SOX2 and examine the parallels with mouse mutants. Functional genomics approaches have started to identify SOX2 molecular targets, and their relevance for SOX2 function in brain development and disease will be discussed.


Subject(s)
Neural Stem Cells , Neuroglia , SOXB1 Transcription Factors/metabolism , Animals , Brain/metabolism , Central Nervous System/metabolism , Humans , Mice , Neural Stem Cells/metabolism , Neuroglia/metabolism , SOXB1 Transcription Factors/genetics , Transcription Factors/metabolism
4.
Cell Rep ; 38(5): 110313, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35108528

ABSTRACT

The adult neurogenic niche in the hippocampus is maintained through activation of reversibly quiescent neural stem cells (NSCs) with radial glia-like morphology (RGLs). Here, we show that the expression of SoxD transcription factors Sox5 and Sox6 is enriched in activated RGLs. Using inducible deletion of Sox5 or Sox6 in the adult mouse brain, we show that both genes are required for RGL activation and the generation of new neurons. Conversely, Sox5 overexpression in cultured NSCs interferes with entry in quiescence. Mechanistically, expression of the proneural protein Ascl1 (a key RGL regulator) is severely downregulated in SoxD-deficient RGLs, and Ascl1 transcription relies on conserved Sox motifs. Additionally, loss of Sox5 hinders the RGL activation driven by neurogenic stimuli such as environmental enrichment. Altogether, our data suggest that SoxD genes are key mediators in the transition of adult RGLs from quiescence to an activated mitotic state under physiological situations.


Subject(s)
Adult Stem Cells/metabolism , Neural Stem Cells/metabolism , SOXD Transcription Factors/metabolism , Animals , Cell Differentiation/physiology , Hippocampus/metabolism , Mice, Transgenic , Neurogenesis/physiology , SOXD Transcription Factors/genetics , Transcription Factors/metabolism
5.
Cells ; 10(7)2021 07 12.
Article in English | MEDLINE | ID: mdl-34359927

ABSTRACT

The transcription factor SOX2 is important for brain development and for neural stem cells (NSC) maintenance. Sox2-deleted (Sox2-del) NSC from neonatal mouse brain are lost after few passages in culture. Two highly expressed genes, Fos and Socs3, are strongly downregulated in Sox2-del NSC; we previously showed that Fos or Socs3 overexpression by lentiviral transduction fully rescues NSC's long-term maintenance in culture. Sox2-del NSC are severely defective in neuronal production when induced to differentiate. NSC rescued by Sox2 reintroduction correctly differentiate into neurons. Similarly, Fos transduction rescues normal or even increased numbers of immature neurons expressing beta-tubulinIII, but not more differentiated markers (MAP2). Additionally, many cells with both beta-tubulinIII and GFAP expression appear, indicating that FOS stimulates the initial differentiation of a "mixed" neuronal/glial progenitor. The unexpected rescue by FOS suggested that FOS, a SOX2 transcriptional target, might act on neuronal genes, together with SOX2. CUT&RUN analysis to detect genome-wide binding of SOX2, FOS, and JUN (the AP1 complex) revealed that a high proportion of genes expressed in NSC are bound by both SOX2 and AP1. Downregulated genes in Sox2-del NSC are highly enriched in genes that are also expressed in neurons, and a high proportion of the "neuronal" genes are bound by both SOX2 and AP1.


Subject(s)
Cell Differentiation , Gene Expression Regulation , Genome , Neural Stem Cells/metabolism , Neurons/cytology , Proto-Oncogene Proteins c-fos/metabolism , SOXB1 Transcription Factors/metabolism , Transcription Factor AP-1/genetics , Animals , Base Sequence , Cell Differentiation/genetics , Down-Regulation/genetics , Gene Deletion , Lentivirus/metabolism , Mice , Models, Biological , Neuroglia/metabolism , Neurons/metabolism , RNA-Seq , Suppressor of Cytokine Signaling 3 Protein/metabolism , Transcription Factor AP-1/metabolism
6.
Stem Cells ; 39(8): 1107-1119, 2021 08.
Article in English | MEDLINE | ID: mdl-33739574

ABSTRACT

The Sox2 transcription factor is necessary for the long-term self-renewal of neural stem cells (NSCs). Its mechanism of action is still poorly defined. To identify molecules regulated by Sox2, and acting in mouse NSC maintenance, we transduced, into Sox2-deleted NSC, genes whose expression is strongly downregulated following Sox2 loss (Fos, Jun, Egr2), individually or in combination. Fos alone rescued long-term proliferation, as shown by in vitro cell growth and clonal analysis. Furthermore, pharmacological inhibition by T-5224 of FOS/JUN AP1 complex binding to its targets decreased cell proliferation and expression of the putative target Suppressor of cytokine signaling 3 (Socs3). Additionally, Fos requirement for efficient long-term proliferation was demonstrated by the reduction of NSC clones capable of long-term expansion following CRISPR/Cas9-mediated Fos inactivation. Previous work showed that the Socs3 gene is strongly downregulated following Sox2 deletion, and its re-expression by lentiviral transduction rescues long-term NSC proliferation. Fos appears to be an upstream regulator of Socs3, possibly together with Jun and Egr2; indeed, Sox2 re-expression in Sox2-deleted NSC progressively activates both Fos and Socs3 expression; in turn, Fos transduction activates Socs3 expression. Based on available SOX2 ChIPseq and ChIA-PET data, we propose a model whereby Sox2 is a direct activator of both Socs3 and Fos, as well as possibly Jun and Egr2; furthermore, we provide direct evidence for FOS and JUN binding on Socs3 promoter, suggesting direct transcriptional regulation. These results provide the basis for developing a model of a network of interactions, regulating critical effectors of NSC proliferation and long-term maintenance.


Subject(s)
Neural Stem Cells , Proto-Oncogene Proteins c-fos , SOXB1 Transcription Factors , Animals , Cell Proliferation/genetics , Cell Self Renewal/genetics , Gene Expression Regulation , Gene Regulatory Networks , Mice , Neural Stem Cells/metabolism , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism
7.
Open Biol ; 11(2): 200339, 2021 02.
Article in English | MEDLINE | ID: mdl-33622105

ABSTRACT

The hippocampus is a brain area central for cognition. Mutations in the human SOX2 transcription factor cause neurodevelopmental defects, leading to intellectual disability and seizures, together with hippocampal dysplasia. We generated an allelic series of Sox2 conditional mutations in mouse, deleting Sox2 at different developmental stages. Late Sox2 deletion (from E11.5, via Nestin-Cre) affects only postnatal hippocampal development; earlier deletion (from E10.5, Emx1-Cre) significantly reduces the dentate gyrus (DG), and the earliest deletion (from E9.5, FoxG1-Cre) causes drastic abnormalities, with almost complete absence of the DG. We identify a set of functionally interconnected genes (Gli3, Wnt3a, Cxcr4, p73 and Tbr2), known to play essential roles in hippocampal embryogenesis, which are downregulated in early Sox2 mutants, and (Gli3 and Cxcr4) directly controlled by SOX2; their downregulation provides plausible molecular mechanisms contributing to the defect. Electrophysiological studies of the Emx1-Cre mouse model reveal altered excitatory transmission in CA1 and CA3 regions.


Subject(s)
Dentate Gyrus/metabolism , Gene Expression Regulation, Developmental , SOXB1 Transcription Factors/metabolism , Action Potentials , Animals , Cell Line, Tumor , Dentate Gyrus/cytology , Dentate Gyrus/embryology , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neurons/cytology , Neurons/metabolism , Neurons/physiology , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , SOXB1 Transcription Factors/genetics , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Tumor Protein p73/genetics , Tumor Protein p73/metabolism , Wnt3A Protein/genetics , Wnt3A Protein/metabolism , Zinc Finger Protein Gli3/genetics , Zinc Finger Protein Gli3/metabolism
8.
Nat Commun ; 12(1): 28, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33397924

ABSTRACT

SOX (SRY-related HMG-box) transcription factors perform critical functions in development and cell differentiation. These roles depend on precise nuclear trafficking, with mutations in the nuclear targeting regions causing developmental diseases and a range of cancers. SOX protein nuclear localization is proposed to be mediated by two nuclear localization signals (NLSs) positioned within the extremities of the DNA-binding HMG-box domain and, although mutations within either cause disease, the mechanistic basis has remained unclear. Unexpectedly, we find here that these two distantly positioned NLSs of SOX2 contribute to a contiguous interface spanning 9 of the 10 ARM domains on the nuclear import adapter IMPα3. We identify key binding determinants and show this interface is critical for neural stem cell maintenance and for Drosophila development. Moreover, we identify a structural basis for the preference of SOX2 binding to IMPα3. In addition to defining the structural basis for SOX protein localization, these results provide a platform for understanding how mutations and post-translational modifications within these regions may modulate nuclear localization and result in clinical disease, and also how other proteins containing multiple NLSs may bind IMPα through an extended recognition interface.


Subject(s)
Cell Nucleus/metabolism , SOXB1 Transcription Factors/chemistry , SOXB1 Transcription Factors/metabolism , Active Transport, Cell Nucleus , Amino Acid Sequence , Animals , Drosophila/metabolism , HEK293 Cells , Humans , Mice , Models, Molecular , Mutant Proteins/metabolism , Neural Stem Cells/metabolism , Nuclear Localization Signals/metabolism , Point Mutation/genetics , Protein Binding , Protein Domains , Protein Isoforms/metabolism , SOXB1 Transcription Factors/genetics , Structure-Activity Relationship
9.
Glia ; 69(3): 579-593, 2021 03.
Article in English | MEDLINE | ID: mdl-32975900

ABSTRACT

Cancer stem cells (CSC) are essential for tumorigenesis. The transcription factor Sox2 is overexpressed in brain gliomas, and is essential to maintain CSC. In mouse high-grade glioma pHGG cells in culture, Sox2 deletion causes cell proliferation arrest and inability to reform tumors after transplantation in vivo; in Sox2-deleted cells, 134 genes are derepressed. To identify genes mediating Sox2 deletion effects, we overexpressed into pHGG cells nine among the most derepressed genes, and identified four genes, Ebf1, Hey2, Zfp423, and Cdkn2b, that strongly reduced cell proliferation in vitro and brain tumorigenesis in vivo. CRISPR/Cas9 mutagenesis of each gene, individually or in combination (Ebf1 + Cdkn2b), significantly antagonized the proliferation arrest caused by Sox2 deletion. The same genes also repressed clonogenicity in primary human glioblastoma-derived CSC-like lines. These experiments identify a network of critical tumor suppressive Sox2-targets whose inhibition by Sox2 is involved in glioma CSC maintenance, defining new potential therapeutic targets.


Subject(s)
Brain Neoplasms , Glioblastoma , Glioma , Oligodendroglioma , Animals , Basic Helix-Loop-Helix Transcription Factors , Brain Neoplasms/genetics , Carcinogenesis/genetics , Cell Line, Tumor , Down-Regulation , Glioma/genetics , Mice , Neoplastic Stem Cells/metabolism , Repressor Proteins , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Trans-Activators
10.
Int J Mol Sci ; 20(18)2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31540269

ABSTRACT

The Sox2 transcription factor, encoded by a gene conserved in animal evolution, has become widely known because of its functional relevance for stem cells. In the developing nervous system, Sox2 is active in neural stem cells, and important for their self-renewal; differentiation to neurons and glia normally involves Sox2 downregulation. Recent evidence, however, identified specific types of fully differentiated neurons and glia that retain high Sox2 expression, and critically require Sox2 function, as revealed by functional studies in mouse and in other animals. Sox2 was found to control fundamental aspects of the biology of these cells, such as the development of correct neuronal connectivity. Sox2 downstream target genes identified within these cell types provide molecular mechanisms for cell-type-specific Sox2 neuronal and glial functions. SOX2 mutations in humans lead to a spectrum of nervous system defects, involving vision, movement control, and cognition; the identification of neurons and glia requiring Sox2 function, and the investigation of Sox2 roles and molecular targets within them, represents a novel perspective for the understanding of the pathogenesis of these defects.


Subject(s)
Neural Stem Cells/cytology , Neuroglia/cytology , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Animals , Cell Differentiation , Cell Self Renewal , Down-Regulation , Humans , Mice , Mutation , Neural Stem Cells/metabolism , Neurogenesis , Neuroglia/metabolism , Signal Transduction
11.
J Exp Neurosci ; 13: 1179069519868224, 2019.
Article in English | MEDLINE | ID: mdl-31431802

ABSTRACT

In our article, we asked whether Sox2, a transcription factor important in brain development and disease, is involved in gene regulation through its action on long-range interactions between promoters and distant enhancers. Our findings highlight that Sox2 shapes a genome-wide network of promoter-enhancer interactions, acting by direct binding to these elements. Sox2 loss affects the three-dimensional (3D) genome and decreases the activity of a subset of genes involved in Sox2-bound interactions. At least one of such downregulated genes, Socs3, is critical for long-term neural stem cell maintenance. These results point to the possibility of identifying a transcriptional network downstream to Sox2, and involved in neural stem cell maintenance. In addition, interacting Sox2-bound enhancers are often connected to genes which are relevant, in man, to neurodevelopmental disease; this may facilitate the detection of functionally relevant mutations in regulatory elements in man, contributing to neural disease.

12.
iScience ; 15: 257-273, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31082736

ABSTRACT

Visual system development involves the formation of neuronal projections connecting the retina to the thalamic dorso-lateral geniculate nucleus (dLGN) and the thalamus to the visual cerebral cortex. Patients carrying mutations in the SOX2 transcription factor gene present severe visual defects, thought to be linked to SOX2 functions in the retina. We show that Sox2 is strongly expressed in mouse postmitotic thalamic projection neurons. Cre-mediated deletion of Sox2 in these neurons causes reduction of the dLGN, abnormal distribution of retino-thalamic and thalamo-cortical projections, and secondary defects in cortical patterning. Reduced expression, in mutants, of Sox2 target genes encoding ephrin-A5 and the serotonin transport molecules SERT and vMAT2 (important for establishment of thalamic connectivity) likely provides a molecular contribution to these defects. These findings unveil thalamic SOX2 function as a novel regulator of visual system development and a plausible additional cause of brain-linked genetic blindness in humans.

13.
Cell Stem Cell ; 24(3): 462-476.e6, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30849367

ABSTRACT

The SOX2 transcription factor is critical for neural stem cell (NSC) maintenance and brain development. Through chromatin immunoprecipitation (ChIP) and chromatin interaction analysis (ChIA-PET), we determined genome-wide SOX2-bound regions and Pol II-mediated long-range chromatin interactions in brain-derived NSCs. SOX2-bound DNA was highly enriched in distal chromatin regions interacting with promoters and carrying epigenetic enhancer marks. Sox2 deletion caused widespread reduction of Pol II-mediated long-range interactions and decreased gene expression. Genes showing reduced expression in Sox2-deleted cells were significantly enriched in interactions between promoters and SOX2-bound distal enhancers. Expression of one such gene, Suppressor of Cytokine Signaling 3 (Socs3), rescued the self-renewal defect of Sox2-ablated NSCs. Our work identifies SOX2 as a major regulator of gene expression through connections to the enhancer network in NSCs. Through the definition of such a connectivity network, our study shows the way to the identification of genes and enhancers involved in NSC maintenance and neurodevelopmental disorders.


Subject(s)
Chromatin/metabolism , Neural Stem Cells/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Cells, Cultured , Gene Regulatory Networks/genetics , Mice , Mice, Knockout , Mice, Transgenic , Mutation , SOXB1 Transcription Factors/deficiency , SOXB1 Transcription Factors/genetics , Zebrafish
14.
Glia ; 66(9): 1929-1946, 2018 09.
Article in English | MEDLINE | ID: mdl-29732603

ABSTRACT

Sox2 is a transcription factor active in the nervous system, within different cell types, ranging from radial glia neural stem cells to a few specific types of differentiated glia and neurons. Mutations in the human SOX2 transcription factor gene cause various central nervous system (CNS) abnormalities, involving hippocampus and eye defects, as well as ataxia. Conditional Sox2 mutation in mouse, with different Cre transgenes, previously recapitulated different essential features of the disease, such as hippocampus and eye defects. In the cerebellum, Sox2 is active from early embryogenesis in the neural progenitors of the cerebellar primordium; Sox2 expression is maintained, postnatally, within Bergmann glia (BG), a differentiated cell type essential for Purkinje neurons functionality and correct motor control. By performing Sox2 Cre-mediated ablation in the developing and postnatal mouse cerebellum, we reproduced ataxia features. Embryonic Sox2 deletion (with Wnt1Cre) leads to reduction of the cerebellar vermis, known to be commonly related to ataxia, preceded by deregulation of Otx2 and Gbx2, critical regulators of vermis development. Postnatally, BG is progressively disorganized, mislocalized, and reduced in mutants. Sox2 postnatal deletion, specifically induced in glia (with GLAST-CreERT2), reproduces the BG defect, and causes (milder) ataxic features. Our results define a role for Sox2 in cerebellar function and development, and identify a functional requirement for Sox2 within postnatal BG, of potential relevance for ataxia in mouse mutants, and in human patients.


Subject(s)
Ataxia/metabolism , Cerebellar Vermis/growth & development , Cerebellar Vermis/metabolism , Neuroglia/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Animals, Newborn , Ataxia/pathology , Cells, Cultured , Cerebellar Vermis/pathology , Gene Expression Regulation/physiology , Glutamic Acid/metabolism , Homeodomain Proteins/metabolism , Mice, Transgenic , Mutation , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neuroglia/pathology , Otx Transcription Factors/metabolism , SOXB1 Transcription Factors/genetics , Synaptic Transmission/physiology
15.
Development ; 145(2)2018 01 19.
Article in English | MEDLINE | ID: mdl-29352015

ABSTRACT

The transcription factor Sox2 is necessary to maintain pluripotency of embryonic stem cells, and to regulate neural development. Neurogenesis in the vertebrate olfactory epithelium persists from embryonic stages through adulthood. The role Sox2 plays for the development of the olfactory epithelium and neurogenesis within has, however, not been determined. Here, by analysing Sox2 conditional knockout mouse embryos and chick embryos deprived of Sox2 in the olfactory epithelium using CRISPR-Cas9, we show that Sox2 activity is crucial for the induction of the neural progenitor gene Hes5 and for subsequent differentiation of the neuronal lineage. Our results also suggest that Sox2 activity promotes the neurogenic domain in the nasal epithelium by restricting Bmp4 expression. The Sox2-deficient olfactory epithelium displays diminished cell cycle progression and proliferation, a dramatic increase in apoptosis and finally olfactory pit atrophy. Moreover, chromatin immunoprecipitation data show that Sox2 directly binds to the Hes5 promoter in both the PNS and CNS. Taken together, our results indicate that Sox2 is essential to establish, maintain and expand the neuronal progenitor pool by suppressing Bmp4 and upregulating Hes5 expression.


Subject(s)
Avian Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Bone Morphogenetic Proteins/metabolism , Neurogenesis/physiology , Olfactory Mucosa/embryology , Olfactory Mucosa/metabolism , Repressor Proteins/genetics , SOXB1 Transcription Factors/metabolism , Animals , Apoptosis , Avian Proteins/deficiency , Avian Proteins/genetics , Base Sequence , Binding Sites/genetics , Bone Morphogenetic Protein 4/metabolism , Cell Cycle , Cell Lineage , Cell Proliferation , Chick Embryo , Female , Gene Knockout Techniques , Mice , Mice, Knockout , Neurogenesis/genetics , Pregnancy , Promoter Regions, Genetic , SOXB1 Transcription Factors/deficiency , SOXB1 Transcription Factors/genetics , Up-Regulation
16.
Sci Adv ; 2(8): e1600060, 2016 08.
Article in English | MEDLINE | ID: mdl-27493992

ABSTRACT

Cranial neural crest cells populate the future facial region and produce ectomesenchyme-derived tissues, such as cartilage, bone, dermis, smooth muscle, adipocytes, and many others. However, the contribution of individual neural crest cells to certain facial locations and the general spatial clonal organization of the ectomesenchyme have not been determined. We investigated how neural crest cells give rise to clonally organized ectomesenchyme and how this early ectomesenchyme behaves during the developmental processes that shape the face. Using a combination of mouse and zebrafish models, we analyzed individual migration, cell crowd movement, oriented cell division, clonal spatial overlapping, and multilineage differentiation. The early face appears to be built from multiple spatially defined overlapping ectomesenchymal clones. During early face development, these clones remain oligopotent and generate various tissues in a given location. By combining clonal analysis, computer simulations, mouse mutants, and live imaging, we show that facial shaping results from an array of local cellular activities in the ectomesenchyme. These activities mostly involve oriented divisions and crowd movements of cells during morphogenetic events. Cellular behavior that can be recognized as individual cell migration is very limited and short-ranged and likely results from cellular mixing due to the proliferation activity of the tissue. These cellular mechanisms resemble the strategy behind limb bud morphogenesis, suggesting the possibility of common principles and deep homology between facial and limb outgrowth.


Subject(s)
Cell Differentiation , Clone Cells/cytology , Face/embryology , Morphogenesis , Neural Crest/cytology , Organogenesis , Animals , Cell Movement , Ectoderm/cytology , Ectoderm/embryology , Gene Expression , Genes, Reporter , Imaging, Three-Dimensional , Mesoderm/cytology , Mesoderm/embryology , Mice , Models, Anatomic , Phenotype , Zebrafish
17.
Cancer Res ; 74(6): 1833-44, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24599129

ABSTRACT

The stem cell-determining transcription factor Sox2 is required for the maintenance of normal neural stem cells. In this study, we investigated the requirement for Sox2 in neural cancer stem-like cells using a conditional genetic deletion mutant in a mouse model of platelet-derived growth factor-induced malignant oligodendroglioma. Transplanting wild-type oligodendroglioma cells into the brain generated lethal tumors, but mice transplanted with Sox2-deleted cells remained free of tumors. Loss of the tumor-initiating ability of Sox2-deleted cells was reversed by lentiviral-mediated expression of Sox2. In cell culture, Sox2-deleted tumor cells were highly sensitive to differentiation stimuli, displaying impaired proliferation, increased cell death, and aberrant differentiation. Gene expression analysis revealed an early transcriptional response to Sox2 loss. The observed requirement of oligodendroglioma stem cells for Sox2 suggested its relevance as a target for therapy. In support of this possibility, an immunotherapeutic approach based on immunization of mice with SOX2 peptides delayed tumor development and prolonged survival. Taken together, our results showed that Sox2 is essential for tumor initiation by mouse oligodendroglioma cells, and they illustrated a Sox2-directed strategy of immunotherapy to eradicate tumor-initiating cells.


Subject(s)
Brain Neoplasms/metabolism , Neoplastic Stem Cells/physiology , Oligodendroglioma/metabolism , SOXB1 Transcription Factors/physiology , Animals , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Brain Neoplasms/therapy , Cancer Vaccines , Cell Line, Tumor , Cell Proliferation , Female , Immunotherapy , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oligodendroglioma/immunology , Oligodendroglioma/pathology , Oligodendroglioma/therapy , Peptide Fragments/immunology , SOXB1 Transcription Factors/immunology , Transcriptome , Tumor Cells, Cultured
18.
Stem Cell Reports ; 1(2): 123-38, 2013.
Article in English | MEDLINE | ID: mdl-24052948

ABSTRACT

The consequences of DNA damage generation in mammalian somatic stem cells, including neural stem cells (NSCs), are poorly understood despite their potential relevance for tissue homeostasis. Here, we show that, following ionizing radiation-induced DNA damage, NSCs enter irreversible proliferative arrest with features of cellular senescence. This is characterized by increased cytokine secretion, loss of stem cell markers, and astrocytic differentiation. We demonstrate that BMP2 is necessary to induce expression of the astrocyte marker GFAP in irradiated NSCs via a noncanonical signaling pathway engaging JAK-STAT. This is promoted by ATM and antagonized by p53. Using a SOX2-Cre reporter mouse model for cell-lineage tracing, we demonstrate irradiation-induced NSC differentiation in vivo. Furthermore, glioblastoma assays reveal that irradiation therapy affects the tumorigenic potential of cancer stem cells by ablating self-renewal and inducing astroglial differentiation.


Subject(s)
Astrocytes/metabolism , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation , Glioblastoma/radiotherapy , Neural Stem Cells/radiation effects , Signal Transduction , Animals , Cell Differentiation/radiation effects , Cell Proliferation/radiation effects , DNA Damage , Humans , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/radiation effects , SOXB1 Transcription Factors/metabolism , Signal Transduction/radiation effects
19.
EMBO J ; 32(16): 2231-47, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23892456

ABSTRACT

Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog-Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog-Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2-Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal.


Subject(s)
Cell Proliferation , Embryonic Stem Cells/physiology , Homeodomain Proteins/metabolism , Protein Interaction Domains and Motifs/genetics , SOXB1 Transcription Factors/metabolism , Animals , Colony-Forming Units Assay , Embryonic Stem Cells/metabolism , Immunoblotting , Immunoprecipitation , Mice , Nanog Homeobox Protein , Plasmids/genetics , Protein Interaction Mapping , SELEX Aptamer Technique , Tryptophan/metabolism , Tyrosine/metabolism
20.
Development ; 140(6): 1250-61, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23444355

ABSTRACT

The Sox2 transcription factor is active in stem/progenitor cells throughout the developing vertebrate central nervous system. However, its conditional deletion at E12.5 in mouse causes few brain developmental problems, with the exception of the postnatal loss of the hippocampal radial glia stem cells and the dentate gyrus. We deleted Sox2 at E9.5 in the telencephalon, using a Bf1-Cre transgene. We observed embryonic brain defects that were particularly severe in the ventral, as opposed to the dorsal, telencephalon. Important tissue loss, including the medial ganglionic eminence (MGE), was detected at E12.5, causing the subsequent impairment of MGE-derived neurons. The defect was preceded by loss of expression of the essential ventral determinants Nkx2.1 and Shh, and accompanied by ventral spread of dorsal markers. This phenotype is reminiscent of that of mice mutant for the transcription factor Nkx2.1 or for the Shh receptor Smo. Nkx2.1 is known to mediate the initial activation of ventral telencephalic Shh expression. A partial rescue of the normal phenotype at E14.5 was obtained by administration of a Shh agonist. Experiments in Medaka fish indicate that expression of Nkx2.1 is regulated by Sox2 in this species also. We propose that Sox2 contributes to Nkx2.1 expression in early mouse development, thus participating in the region-specific activation of Shh, thereby mediating ventral telencephalic patterning induction.


Subject(s)
Body Patterning/genetics , Embryonic Development/genetics , Hedgehog Proteins/genetics , Nuclear Proteins/genetics , SOXB1 Transcription Factors/physiology , Telencephalon/embryology , Transcription Factors/genetics , Animals , Cells, Cultured , Embryo, Mammalian , Female , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Proteins/metabolism , Pregnancy , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Telencephalon/metabolism , Thyroid Nuclear Factor 1 , Transcription Factors/metabolism , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...