Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Sex Differ ; 6: 4, 2015.
Article in English | MEDLINE | ID: mdl-25750709

ABSTRACT

BACKGROUND: Differences in expression of drug transporters in human kidney contribute to changes in pharmacokinetics and toxicokinetics of a variety of drug compounds. The basal expression levels of genes involved in drug transport processes in the kidney introduces differences in bioavailability, distribution, and clearance of drugs, possibly influencing drug efficacy and adverse reactions. Sex differences in gene expression of transporters are a key cause of differences in sex-dependent pharmacokinetics, which may characterize many drugs and contribute to individual differences in drug efficacy and toxicity. Therefore, evaluating the expression of drug transporters in normal human kidneys is important to better understand differences in drug bioavailability, distribution, and clearance of drugs in humans. Other factors such as age and ethnicity may also contribute to individual differences in gene expression of drug transporters in the human kidney. METHODS: Quantitative real-time PCR (QRT-PCR) was performed to determine the gene expression of 30 drug transporters in 95 age-matched normal human kidney tissues. Multiple Student's t-tests (Sidak-Bonferroni correction) and two-way ANOVA (Bonferroni correction) analyses were used to determine statistically significant differences. RESULTS: In the 30 transporter genes examined, sex, ethnicity, and age differences in gene expression were exhibited in normal human kidney tissue. These changes in expression were not found to be differentially significant. However, sex-age and sex-ethnicity interactions were found to be statistically significant. For sex-age interactions, SCL22A12 was found to be significantly higher expressed in females <50 years compared to males <50 years. Expression levels of SLC22A2, SLC22A12, SLC6A16, and ABCB6 were significantly higher in females <50 years compared to females ≥50 years. In sex-ethnicity interactions, expression levels of ATP7B and KCNJ8 were found to be significantly higher in African American females compared to European American females. Also, the expression of SLC31A2 was significantly higher in European American males compared to European American females. CONCLUSIONS: Sex, age, and ethnic differences impacted the expression of drug transporters in normal human kidneys, which suggests that the analysis of gene expression of drug transporters will aid in improving the usage/dosage of drug therapies influencing personalized medicine and susceptibility to adverse drug reactions.

2.
Pathology ; 43(6): 642-56, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21897331

ABSTRACT

This review discusses gene therapy as a new treatment paradigm where genetic material is introduced into cells for therapeutic benefit. The genetic material is the 'drug'. It can have a transient or ongoing effect depending on whether or not the introduced genetic material becomes part of the host cell DNA. Different delivery and gene technologies are chosen by investigators to maximise gene delivery to, and expression within, the target cells appropriate for the disease indication. The presence and expression of the introduced genetic material is monitored by molecular means so that treatment efficacy can be assessed via changes in surrogate and/or actual markers of disease. Of interest to the pathologist will be the approaches being developed for the disease indications highlighted and the monitoring of treatment efficacy.


Subject(s)
Genetic Therapy , Pathology/methods , Drug Evaluation, Preclinical , Genetic Vectors , HIV Infections/genetics , HIV Infections/therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/therapy , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/therapy
3.
Trends Pharmacol Sci ; 31(3): 108-14, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20117848

ABSTRACT

Clinical data suggest that gender dimorphic profiles are emerging in terms of both drug efficacy and adverse drug reactions (ADRs). With an increasing emphasis on individualised therapies and the need to prevent drug attrition there is a compelling need to understand the molecular basis for gender dimorphic profiles in ADRs and the consequences. Classes of agents exhibiting gender-based variation in pharmaceutical efficacy and toxicity include anaesthetics, HIV-1 therapies and antiarrhythmic drugs. Body weight differences are often cited as a reason for differences in drug pharmacokinetics and subsequent toxicity. However, some studies accounted for these factors and still found significance suggesting that dosage versus body weight does not explain the outcome. Here, we present an overview of current understanding of gender-specific drug toxicity and present rational molecular explanations for these adverse events. There is mounting evidence in support of hormonal effects underpinning the majority of the ADR differences observed between the sexes.


Subject(s)
Drug-Related Side Effects and Adverse Reactions/etiology , Sex Characteristics , Carrier Proteins/metabolism , Female , Hormones/metabolism , Humans , Male , Pharmaceutical Preparations/metabolism
4.
Nat Methods ; 6(10): 737-40, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19718032

ABSTRACT

We developed genetically encoded fluorescence resonance energy transfer (FRET)-based sensors that display a large ratiometric change upon Zn(2+) binding, have affinities that span the pico- to nanomolar range and can readily be targeted to subcellular organelles. Using this sensor toolbox we found that cytosolic Zn(2+) was buffered at 0.4 nM in pancreatic beta cells, and we found substantially higher Zn(2+) concentrations in insulin-containing secretory vesicles.


Subject(s)
Biological Assay/methods , Fluorescence Resonance Energy Transfer/methods , Homeostasis/physiology , Molecular Probe Techniques , Protein Engineering/methods , Recombinant Proteins/metabolism , Zinc/metabolism , Animals , Cell Line , Insulin-Secreting Cells/metabolism , Rats , Recombinant Proteins/analysis , Zinc/analysis
5.
Diabetes ; 58(9): 2070-83, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19542200

ABSTRACT

OBJECTIVE: Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele. RESEARCH DESIGN AND METHODS: Slc30a8 null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles were undertaken using standard protocols. RESULTS: ZnT8(-/-) mice displayed age-, sex-, and diet-dependent abnormalities in glucose tolerance, insulin secretion, and body weight. Islets isolated from null mice had reduced granule zinc content and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion, and insulin crystal dissolution, assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8(-/-) islets. Insulin processing was normal. Molecular modeling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn(2+) transport activity than W325 ZnT8 by fluorescence-based assay. CONCLUSIONS: ZnT8 is required for normal insulin crystallization and insulin release in vivo but not, remarkably, in vitro. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risks.


Subject(s)
Blood Glucose/metabolism , Cation Transport Proteins/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Zinc/metabolism , Animals , Cation Transport Proteins/genetics , Cytoplasmic Granules/metabolism , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/genetics , Exocytosis/physiology , Female , Gene Expression/physiology , HeLa Cells , Homeostasis/physiology , Humans , Insulin Secretion , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Insulin-Secreting Cells/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Polymorphism, Genetic , Risk Factors , Zinc Transporter 8
6.
Diabetes ; 57(6): 1595-604, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18346985

ABSTRACT

OBJECTIVE: ATP-sensitive K(+) channels (K(ATP) channels) link glucose metabolism to the electrical activity of the pancreatic beta-cell to regulate insulin secretion. Mutations in either the Kir6.2 or sulfonylurea receptor (SUR) 1 subunit of the channel have previously been shown to cause neonatal diabetes. We describe here an activating mutation in the ABCC8 gene, encoding SUR1, that is associated with the development of type 2 diabetes only in adults. RESEARCH DESIGN AND METHODS: Recombinant K(ATP) channel subunits were expressed using pIRES2-based vectors in human embryonic kidney (HEK) 293 or INS1(832/13) cells and the subcellular distribution of c-myc-tagged SUR1 channels analyzed by confocal microscopy. K(ATP) channel activity was measured in inside-out patches and plasma membrane potential in perforated whole-cell patches. Cytoplasmic [Ca(2+)] was imaged using Fura-Red. RESULTS: A mutation in ABCC8/SUR1, leading to a Y356C substitution in the seventh membrane-spanning alpha-helix, was observed in a patient diagnosed with hyperglycemia at age 39 years and in two adult offspring with impaired insulin secretion. Single K(ATP) channels incorporating SUR1-Y356C displayed lower sensitivity to MgATP (IC(50) = 24 and 95 micromol/l for wild-type and mutant channels, respectively). Similar effects were observed in the absence of Mg(2+), suggesting an allosteric effect via associated Kir6.2 subunits. Overexpression of SUR1-Y356C in INS1(832/13) cells impaired glucose-induced cell depolarization and increased in intracellular free Ca(2+) concentration, albeit more weakly than neonatal diabetes-associated SUR1 mutants. CONCLUSIONS: An ABCC8/SUR1 mutation with relatively minor effects on K(ATP) channel activity and beta-cell glucose sensing causes diabetes in adulthood. These data suggest a close correlation between altered SUR1 properties and clinical phenotype.


Subject(s)
ATP-Binding Cassette Transporters/genetics , Diabetes Mellitus, Type 2/genetics , Insulin-Secreting Cells/physiology , KATP Channels/physiology , Mutation , Polymorphism, Single Nucleotide , Potassium Channels, Inwardly Rectifying/genetics , Receptors, Drug/genetics , Adult , Calcium/physiology , Cell Line , Cytoplasm/physiology , Diabetes Mellitus, Type 2/physiopathology , Electrophysiology , Exons , Humans , Hyperglycemia/genetics , Kidney/embryology , Membrane Potentials , Patch-Clamp Techniques , Sulfonylurea Receptors
SELECTION OF CITATIONS
SEARCH DETAIL