Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 15(1): 29, 2024 01 11.
Article in English | MEDLINE | ID: mdl-38212319

ABSTRACT

Intestinal ischemia-reperfusion (II/R) injury is an urgent clinical disease with high incidence and mortality, and impaired intestinal barrier function caused by excessive apoptosis of intestinal cells is an important cause of its serious consequences. Tripartite motif-containing protein 65 (TRIM65) is an E3 ubiquitin ligase that is recently reported to suppress the inflammatory response and apoptosis. However, the biological function and regulation of TRIM65 in II/R injury are totally unknown. We found that TRIM65 was significantly decreased in hypoxia-reoxygenation (H/R) induced intestinal epithelial cells and II/R-induced intestine tissue. TRIM65 knockout mice markedly aggravated intestinal apoptosis and II/R injury. To explore the molecular mechanism of TRIM65 in exacerbating II/R-induced intestinal apoptosis and damage, thymocyte selection-associated high mobility group box factor 4 (TOX4) was screened out as a novel substrate of TRIM65 using the yeast two-hybrid system. TRIM65 binds directly to the N-terminal of TOX4 through its coiled-coil and SPRY structural domains. Immunofluorescence confocal microscopy showed that they can co-localize both in the cytoplasm and nucleus. Furthermore, TRIM65 mediated the K48 ubiquitination and degradation of TOX4 depending on its E3 ubiquitin ligase activity. In addition, TRIM65 inhibits H/R-induced intestinal epithelial apoptosis via TOX4. In summary, our results indicated that TRIM65 promotes ubiquitination and degradation of TOX4 to inhibit apoptosis in II/R. These findings provide a promising target for the clinical treatment of II/R injury.


Subject(s)
Reperfusion Injury , Ubiquitin-Protein Ligases , Animals , Mice , Apoptosis , Intestines , Ischemia , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Neoplasm Proteins/metabolism
2.
Article in English | MEDLINE | ID: mdl-34976100

ABSTRACT

OBJECTIVE: This study explored the 10-year efficacy, safety, and prognostic factors of low-dose collagenase chemonucleolysis (CCNL) combined with radiofrequency (RF) in the treatment of lumbar disc herniation (LDH). METHODS: The data of 167 LDH patients were collected. Modified MacNab criteria, Numerical Rating Scale (NRS), and Japanese Orthopedic Association (JOA) scores were, respectively, used to evaluate patients' excellent and good rates, pain degree, and nerve function. The preoperative and 10-year postoperative patients' pain, numbness, and muscle weakness were compared. Patients' complications in perioperative period, recurrent/reappeared LDH, and reoperations were recorded. Finally, the independent risk factors affecting the long-time efficacy were assessed. RESULTS: A total of 126 patients were included. The patients' excellent and good rates were 86.51%-92.86% with no significant difference (P > 0.05). Postoperative NRS and JOA scores significantly improved (P < 0.01), most obvious within 6 months postoperatively. At 10 years postoperatively, 65.08%, 83.95%, and 93.02% of patients' pain, numbness, and muscle weakness were completely relieved (P < 0.05). Perioperative complications occurred in three patients with the rate of 2.38%. Recurrent/reappeared LDH patients were 11 with the ratio of 8.73%; nine of them underwent reoperations with the rate of 7.14%. And patients' probability of fair and poor efficacy at 10 years postoperatively with the course of disease >12 months and the responsibility disc ≥2 were, respectively, 6.005 and 4.227 times that of patients with the course of disease ≤12 months and the responsibility disc = 1 (P < 0.05). CONCLUSION: The combined treatment is effective and safe in the long term. A course of disease >12 months and responsibility disc ≥2 independently reduce efficacy, and a course of disease >12 months has a more significant impact.

SELECTION OF CITATIONS
SEARCH DETAIL
...