Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Mol Biol ; 28(6): 512-520, 2021 06.
Article in English | MEDLINE | ID: mdl-34117479

ABSTRACT

Very long chain fatty acids (VLCFAs) are essential building blocks for the synthesis of ceramides and sphingolipids. The first step in the fatty acid elongation cycle is catalyzed by the 3-keto acyl-coenzyme A (CoA) synthases (in mammals, ELOVL elongases). Although ELOVLs are implicated in common diseases, including insulin resistance, hepatic steatosis and Parkinson's, their underlying molecular mechanisms are unknown. Here we report the structure of the human ELOVL7 elongase, which comprises an inverted transmembrane barrel surrounding a 35-Å long tunnel containing a covalently attached product analogue. The structure reveals the substrate-binding sites in the narrow tunnel and an active site deep in the membrane. We demonstrate that chain elongation proceeds via an acyl-enzyme intermediate involving the second histidine in the canonical HxxHH motif. The unusual substrate-binding arrangement and chemistry suggest mechanisms for selective ELOVL inhibition, relevant for diseases where VLCFAs accumulate, such as X-linked adrenoleukodystrophy.


Subject(s)
Fatty Acid Elongases/chemistry , Fatty Acids/metabolism , Adrenoleukodystrophy/enzymology , Animals , Binding Sites , Catalytic Domain , Cloning, Molecular , Coenzyme A/metabolism , Crystallography, X-Ray , Fatty Acid Elongases/antagonists & inhibitors , Fatty Acid Elongases/metabolism , HEK293 Cells , Histidine/chemistry , Humans , Imidazoles/metabolism , Models, Molecular , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sf9 Cells , Spectrometry, Mass, Electrospray Ionization/methods , Structure-Activity Relationship , Substrate Specificity
2.
Front Microbiol ; 12: 798194, 2021.
Article in English | MEDLINE | ID: mdl-35069500

ABSTRACT

Esterases are a class of enzymes that split esters into an acid and an alcohol in a chemical reaction with water, having high potential in pharmaceutical, food and biofuel industrial applications. To advance the understanding of esterases, we have identified and characterized E53, an alkalophilic esterase from a marine bacterium Erythrobacter longus. The crystal structures of wild type E53 and three variants were solved successfully using the X-ray diffraction method. Phylogenetic analysis classified E53 as a member of the family IV esterase. The enzyme showed highest activity against p-nitrophenyl butyrate substrate at pH 8.5-9.5 and 40°C. Based on the structural feature, the catalytic pocket was defined as R1 (catalytic center), R2 (pocket entrance), and R3 (end area of pocket) regions. Nine variants were generated spanning R1-R3 and thorough functional studies were performed. Detailed structural analysis and the results obtained from the mutagenesis study revealed that mutations in the R1 region could regulate the catalytic reaction in both positive and negative directions; expanding the bottleneck in R2 region has improved the enzymatic activity; and R3 region was associated with the determination of the pH pattern of E53. N166A in R3 region showed reduced activity only under alkaline conditions, and structural analysis indicated the role of N166 in stabilizing the loop by forming a hydrogen bond with L193 and G233. In summary, the systematic studies on E53 performed in this work provide structural and functional insights into alkaliphilic esterases and further our knowledge of these enzymes.

3.
J Biol Chem ; 296: 100165, 2021.
Article in English | MEDLINE | ID: mdl-33293369

ABSTRACT

The integral membrane zinc metalloprotease ZMPSTE24 is important for human health and longevity. ZMPSTE24 performs a key proteolytic step in maturation of prelamin A, the farnesylated precursor of the nuclear scaffold protein lamin A. Mutations in the genes encoding either prelamin A or ZMPSTE24 that prevent cleavage cause the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS) and related progeroid disorders. ZMPSTE24 has a novel structure, with seven transmembrane spans that form a large water-filled membrane chamber whose catalytic site faces the chamber interior. Prelamin A is the only known mammalian substrate for ZMPSTE24; however, the basis of this specificity remains unclear. To define the sequence requirements for ZMPSTE24 cleavage, we mutagenized the eight residues flanking the prelamin A scissile bond (TRSY↓LLGN) to all other 19 amino acids, creating a library of 152 variants. We also replaced these eight residues with sequences derived from putative ZMPSTE24 cleavage sites from amphibian, bird, and fish prelamin A. Cleavage of prelamin A variants was assessed using an in vivo yeast assay that provides a sensitive measure of ZMPSTE24 processing efficiency. We found that residues on the C-terminal side of the cleavage site are most sensitive to changes. Consistent with other zinc metalloproteases, including thermolysin, ZMPSTE24 preferred hydrophobic residues at the P1' position (Leu647), but in addition, showed a similar, albeit muted, pattern at P2'. Our findings begin to define a consensus sequence for ZMPSTE24 that helps to clarify how this physiologically important protease functions and may ultimately lead to identifying additional substrates.


Subject(s)
Lamin Type A/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Metalloendopeptidases/chemistry , Metalloendopeptidases/metabolism , Zinc/metabolism , Amino Acid Sequence , Catalytic Domain , Humans , Lamin Type A/chemistry , Lamin Type A/genetics , Membrane Proteins/genetics , Metalloendopeptidases/genetics , Mutation , Proteolysis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity
4.
Dis Model Mech ; 11(7)2018 07 13.
Article in English | MEDLINE | ID: mdl-29794150

ABSTRACT

The human zinc metalloprotease ZMPSTE24 is an integral membrane protein crucial for the final step in the biogenesis of the nuclear scaffold protein lamin A, encoded by LMNA After farnesylation and carboxyl methylation of its C-terminal CAAX motif, the lamin A precursor (prelamin A) undergoes proteolytic removal of its modified C-terminal 15 amino acids by ZMPSTE24. Mutations in LMNA or ZMPSTE24 that impede this prelamin A cleavage step cause the premature aging disease Hutchinson-Gilford progeria syndrome (HGPS), and the related progeroid disorders mandibuloacral dysplasia type B (MAD-B) and restrictive dermopathy (RD). Here, we report the development of a 'humanized yeast system' to assay ZMPSTE24-dependent cleavage of prelamin A and examine the eight known disease-associated ZMPSTE24 missense mutations. All mutations show diminished prelamin A processing and fall into three classes, with defects in activity, protein stability or both. Notably, some ZMPSTE24 mutants can be rescued by deleting the E3 ubiquitin ligase Doa10, involved in endoplasmic reticulum (ER)-associated degradation of misfolded membrane proteins, or by treatment with the proteasome inhibitor bortezomib. This finding may have important therapeutic implications for some patients. We also show that ZMPSTE24-mediated prelamin A cleavage can be uncoupled from the recently discovered role of ZMPSTE24 in clearance of ER membrane translocon-clogged substrates. Together with the crystal structure of ZMPSTE24, this humanized yeast system can guide structure-function studies to uncover mechanisms of prelamin A cleavage, translocon unclogging, and membrane protein folding and stability.


Subject(s)
Lamin Type A/metabolism , Membrane Proteins/genetics , Metalloendopeptidases/genetics , Mutation, Missense/genetics , Progeria/genetics , Alleles , Amino Acid Motifs , Biosynthetic Pathways , Humans , Lamin Type A/biosynthesis , Membrane Proteins/chemistry , Metalloendopeptidases/chemistry , Proteasome Endopeptidase Complex/metabolism , Protein Stability , Proteolysis , SEC Translocation Channels/metabolism , Saccharomyces cerevisiae/metabolism , Substrate Specificity , Ubiquitin/metabolism , Ubiquitination
5.
J Mol Biol ; 430(9): 1311-1323, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29555555

ABSTRACT

Multidrug resistance (MDR) in bacterial pathogens has become a severe threat to public health. Membrane transporters of the multidrug and toxic compound extrusion (MATE) family contribute critically to MDR, making them promising drug targets. Despite recent advances, structures in different conformations and the mechanistic details of their antiport cycle are still elusive. Here we studied NorM_PS, a representative MATE transporter from Pseudomonas stutzeri, using biochemical assays in combination with hydrogen/deuterium exchange-mass spectrometry. Our results confirm that the antiport is proton dependent and electroneutral with a stoichiometry of two protons per one doubly positively charged substrate. We investigated the conformational dynamics upon substrate binding, and our hydrogen/deuterium exchange-mass spectrometry analysis revealed an occlusion in the proposed binding site as well as a closure of the cytoplasmic cavity and formation of a periplasmic cavity. Together with the results of selected variants (D38N, D373N and Q376A), we propose a six-step rocker-switch model for NorM_PS, which also increases our understanding of related MATE transporters and may help to fight the burden of MDR.


Subject(s)
Antiporters/chemistry , Antiporters/metabolism , Mutation , Pseudomonas stutzeri/metabolism , Antiporters/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Deuterium Exchange Measurement , Mass Spectrometry , Models, Molecular , Protein Binding , Protein Conformation , Pseudomonas stutzeri/chemistry , Pseudomonas stutzeri/genetics
6.
J Biol Chem ; 291(30): 15503-14, 2016 07 22.
Article in English | MEDLINE | ID: mdl-27235402

ABSTRACT

Multidrug and toxic compound extrusion (MATE) transporters exist in all three domains of life. They confer multidrug resistance by utilizing H(+) or Na(+) electrochemical gradients to extrude various drugs across the cell membranes. The substrate binding and the transport mechanism of MATE transporters is a fundamental process but so far not fully understood. Here we report a detailed substrate binding study of NorM_PS, a representative MATE transporter from Pseudomonas stutzeri Our results indicate that NorM_PS is a proton-dependent multidrug efflux transporter. Detailed binding studies between NorM_PS and 4',6-diamidino-2-phenylindole (DAPI) were performed by isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectrofluorometry. Two exothermic binding events were observed from ITC data, and the high-affinity event was directly correlated with the extrusion of DAPI. The affinities are about 1 µm and 0.1 mm for the high and low affinity binding, respectively. Based on our homology model of NorM_PS, variants with mutations of amino acids that are potentially involved in substrate binding, were constructed. By carrying out the functional characterization of these variants, the critical amino acid residues (Glu-257 and Asp-373) for high-affinity DAPI binding were determined. Taken together, our results suggest a new substrate-binding site for MATE transporters.


Subject(s)
Bacterial Proteins/chemistry , Carrier Proteins/chemistry , Drug Resistance, Multiple, Bacterial , Indoles/chemistry , Pseudomonas stutzeri/chemistry , Amino Acid Substitution , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Indoles/metabolism , Mutation, Missense , Pseudomonas stutzeri/genetics , Pseudomonas stutzeri/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...