Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Food Chem ; 447: 138877, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38492302

ABSTRACT

The UHPLCHRMS and Gas Chromatography-Olfactometry-Mass Spectrometry (GC-O-MS) techniques were applied to investigate effects of lipid molecules and heat transfer on the generation of aroma compounds in roasted chicken skin. Nineteen odorants were identified as most important aroma contributors based on odor activity values (OAVs) exceeding 1. Lipidomic analysis identified 3926 lipids in the samples, in which triglycerides (TG), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and ceramide (Cer) had a contribution of 20.63%, 12.46%, 11.95%, and 11.39%, respectively. Furthermore, it was observed that PS(18:3e_22:5) and TG(18:0_18:1_18:1) serve as significant chemical markers for distinguishing chicken skin during the roasting (p < 0.05). TGs, notably TG(16:1_18:1_18:2) and TG(18:1_18:2_18:2), were postulated as key retainers for binding crucial aroma compounds. Meanwhile, PC, PE, and Cer played pivotal roles in aroma compound formation. Additionally, higher thermal conductivity and reduced thermal diffusivity significantly contributed to the formation of key odorants.


Subject(s)
Odorants , Volatile Organic Compounds , Animals , Olfactometry/methods , Odorants/analysis , Chickens , Chromatography, High Pressure Liquid , Hot Temperature , Volatile Organic Compounds/analysis , Lipids
2.
Food Chem X ; 21: 101167, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38420500

ABSTRACT

Aroma compounds in the roasted breasts, thighs and skins of chicken were isolated by solvent-assisted flavor evaporation (SAFE), quantitated by gas chromatography-olfactometry-mass (GC-O-MS), analyzed by aroma extract dilution analysis (AEDA), and determined by recombination-omission tests and sensory evaluation. Forty-seven aroma compounds in total, including aldehydes, ketones, furans, pyrazines, and furanones, were selected by AEDA. Twenty-five compounds were selected as pivotal odorants (Odor Activity Value, OAV ≥ 1). Twenty aroma compounds significantly were identified by recombination and omission experiments. Anethole (fennel odor) was the highest OAV (> 1843). Hexanal (grassy) and (E, E)-2,4-decadienal (meaty) were the most abundant aldehydes identified in roasted chicken. 1-octen-3-ol (mushroom), methanethiol (cabbage) and dimethyl trisulfide (areca, sulfur) were considered the key compounds of the breast and thighs of roasted chicken. Notably, furanone and pyrazines, 4-hydroxy-5-methyl-3(2H)-furanone (caramel, sweet and burning odor), 3-ethyl-2,5-dimethylpyrazine (nutty, toasty) and 2,3-dimethyl-5-ethylpyrazine (nutty, toasty) had the most significant effect on roasted chicken odor, especially in the skin.

SELECTION OF CITATIONS
SEARCH DETAIL