Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
ACS Omega ; 8(42): 39052-39066, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901505

ABSTRACT

The automatic inflow control device (AICD) used for water control and gas recovery in gas wells as the core component of gas well intelligent layered/segmented production and water control technology is very important for the development of advanced well completion (AWC) technology in water-producing gas reservoirs. Therefore, the design of AICD to ensure that the gas flows smoothly inside it and to keep water under control to a greater extent can maximize the performance of the AICD, and the most important thing is to restrict the water in the formation from entering the wellbore. However, currently, there are very few designs and research on the AICD used for water control and gas production in the gas wells, and the performance of this type of tool and the law of gas and water flow inside it are not perfect, so more in-depth research is needed. In this paper, a new type of AICD is designed to realize the function of water control and gas flow smoothly, and the DoE of the new AICD is carried out, determining the factors that will affect the key technical indicators and the factors that may have interactive effects, using the numerical simulation method of computational fluid dynamics to carry out optimal design, conducting fluid physical property sensitivity analysis, and flow rate applicability analysis. The results show that the tool is not sensitive to the viscosity of water and gas in different gas reservoirs but is very sensitive to the density of water and gas. When the gas/water flow rate ratio is less than 4, it can exert its water control effect. In addition, the results of multiple sets of physical experiments are well consistent with the simulation results; the average deviation of single-phase water is 10.91% and the average deviation of single-phase gas is 11.85%. Computational fluid dynamics and physical experiment results show that, under these conditions, the difference in fluid flow characteristics can be fully exploited; the channel is automatically identified to produce a small gas pressure drop and a large water flow pressure drop. The research in this paper belongs to the key technology of the AWC technology of gas wells in the new water control strategy of the current and has a certain reference value to make up for the defects of drainage gas recovery technology in the water management strategy..

2.
J Proteome Res ; 22(3): 942-950, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36626706

ABSTRACT

Prostate cancer (PCa) is the second leading cause of male cancer-related deaths in the United States. The pre-mature forms of prostate-specific antigen (PSA), proPSA, were shown to be associated with PCa. However, there is a technical challenge in the development of antibody-based immunoassays for specific recognition of each individual proPSA isoform. Herein, we report the development of highly specific, antibody-free, targeted mass spectrometry assays for simultaneous quantification of [-2], [-4], [-5], and [-7] proPSA isoforms in voided urine. The newly developed proPSA assays capitalize on Lys-C digestion to generate surrogate peptides with appropriate length (9-16 amino acids) along with long-gradient liquid chromatography separation. The assay utility of these isoform markers was evaluated in a cohort of 30 well-established clinical urine samples for distinguishing PCa patients from healthy controls. Under the 95% confidence interval, the combination of [-2] and [-4] proPSA isoforms yields the area under curve (AUC) of 0.86, and the AUC value for the combined all four isoforms was calculated to be 0.85. We have further verified [-2]proPSA, the dominant isoform, in an independent cohort of 34 clinical urine samples. Validation of proPSA isoforms in large-scale cohorts is needed to demonstrate their potential clinical utility.


Subject(s)
Prostate-Specific Antigen , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/diagnosis , Immunoassay , Protein Isoforms , Mass Spectrometry
3.
Anal Biochem ; 658: 114924, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36162445

ABSTRACT

Peptide loss due to surface absorption can happen at any step in a protein analysis workflow and is sometimes especially deleterious for hydrophobic peptides. In this study, we found the LC-MS compatible surfactant, n-Dodecyl-ß-D-maltoside (DDM), can maximize hydrophobic peptide recovery in various samples including single cell digests, mAb clinical PK samples, and mAb peptide mapping samples. In HeLa single cell proteomics analysis, more than half of all unique peptides identified were found only in DDM prepared samples, most of which had significantly higher hydrophobicities compared to peptides in control samples. In clinical PK studies, DDM enhanced hydrophobic complementarity-determining region (CDR) peptide signals significantly. The fold change of CDR peptides' intensity enhancement in DDM added samples compared to controls correlate with peptide retention time and hydrophobicity, providing guidance for surrogate peptide selection and peptide standard handling in PK studies. For peptide mapping analysis of mAbs, DDM can improve hydrophobic peptide signal and solution stability over 48 h in an autosampler at 4 °C, which can aid method qualification and transfer during drug development. Lastly, maximizing hydrophobic peptide recovery from samples dried in vacuo was achieved by DDM reconstitution, which provided higher signal for later eluting peaks and higher proteome coverage overall.


Subject(s)
Proteomics , Surface-Active Agents , Proteomics/methods , Surface-Active Agents/chemistry , Proteome/chemistry , Complementarity Determining Regions , Peptides/metabolism , Mass Spectrometry , Hydrophobic and Hydrophilic Interactions , Antibodies
4.
J Pharm Biomed Anal ; 219: 114925, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35810724

ABSTRACT

Sequence variants are anomalous misincorporations of amino acids into the primary structure of therapeutic antibodies during DNA replication and protein biosynthesis. As these low abundance variants contribute to molecular heterogeneity and could negatively impact the safety and efficacy of a protein therapeutic, analytical methods like liquid chromatography tandem mass spectrometry (LC-MS2) are used to monitor them with the goal of establishing control strategies that limit their occurrence. Current LC-MS2 strategies depend on relatively long gradients that minimize coelution between abundant non-variant peptide peaks and trace-level variants to limit ion suppression that can potentially conceal the latter. However, lengthy LC gradients reduce the number of samples that can be analyzed per day, limiting the practicality of LC-MS2 when analyzing large sample sets. Furthermore, confident variant identification partly depends on capturing rich MS2 spectra that localize any amino acid misincorporations, which can be challenging due to the low abundance of this class of analyte. This work drastically reduces the cycle time to run each therapeutic antibody sample with roughly the same or even more variant identifications, compared to traditional LC-MS2 analysis, by integrating an Evosep One LC platform with an Orbitrap Fusion Lumos mass spectrometer. It also introduces a novel strategy using synthetic peptides that contain heavy isotopes placed near both termini to validate lower confidence variants in one targeted LC-MS2 run according to retention time, precursor mass signal, and MS2 fragment patterns shared with the heavy peptide variant. Taken together, this approach enables high-throughput sequence variant analysis at 30 samples per day as well as validation for lower confidence variants that can be integrated into therapeutic antibody process development and characterization.


Subject(s)
Peptides , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Peptides/chemistry , Tandem Mass Spectrometry/methods
5.
Anal Chem ; 94(24): 8625-8632, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35679579

ABSTRACT

Polysorbates are nonionic surfactants that have been widely used in biotherapeutic formulations to prevent protein aggregation and denaturation. However, polysorbates are subject to degradation after prolonged storage if certain lipases are present in the biotherapeutic product. Because the degradation of polysorbates compromises the shelf life of biotherapeutics and leads to the formation of undesirable products such as protein aggregates and subvisible particles, it is important to identify the active enzymes that catalyze polysorbate hydrolysis. In this study, we developed a novel fluorophosphonate activity-based protein profiling (ABPP) probe (termed the REGN probe), which mimics the structure of polysorbate and targets lipases catalyzing polysorbate degradation. We demonstrated that the REGN probe could enrich certain lipases from Chinese hamster ovary (CHO) cell lysate by more than 100-fold compared with direct tryptic digestion. Furthermore, we found that the REGN probe had higher lipase enrichment efficiency than commercially available ABPP probes including fluorophosphonate-biotin (FP-biotin) and FP-desthiobiotin. Remarkably, the REGN probe can enrich several lipases that cannot be labeled by commercial probes, such as lysosomal acid lipase and cytosolic phospholipase A2. Additionally, we showed that lipases with abundances as low as 0.08 ppm in drug substances were detected by the REGN probe enrichment and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Collectively, we have developed a novel ABPP probe with higher enrichment efficiency and broader coverage for lipases compared with commercial probes, and this probe can be used to detect the trace level of lipases in biotherapeutic products and to facilitate their development and manufacturing.


Subject(s)
Polysorbates , Tandem Mass Spectrometry , Animals , CHO Cells , Chromatography, Liquid , Cricetinae , Cricetulus , Lipase , Polysorbates/chemistry , Surface-Active Agents/chemistry
6.
J Pharm Biomed Anal ; 209: 114541, 2022 Feb 05.
Article in English | MEDLINE | ID: mdl-34954467

ABSTRACT

Non-reduced peptide mapping by liquid chromatography-mass spectrometry (LC-MS) analysis is a commonly used method for disulfide linkage characterization to assess structural integrity and quality of therapeutic monoclonal antibodies (mAbs). However, disulfide scrambling artifacts induced during sample preparation are often observed when basic pH and high temperatures are used during denaturation and digestion. To minimize disulfide scrambling artifacts, methods using various acidic pH conditions have been developed by multiple groups. However, lower pH conditions increase missed and non-specific cleavages, which complicates disulfide bond analysis because the majority of enzymes used in protein characterization are most efficient at alkaline pH. Here, we developed a non-reduced peptide mapping method for mAb characterization that minimizes disulfide scrambling at basic pH by adding an oxidizing agent, cystamine, and a low concentration of iodoacetamide (IAA) alkylating agent. Two human IgG1 mAbs, one with kappa light chain and another one with lambda light chain, were used as model proteins to develop and optimize the method. Using this novel method, disulfide scrambled peptides related to light chain-heavy chain (LC-HC) inter-disulfide disruption were significantly reduced with high reproducibility compared to conventional methods. Results demonstrated that the cystamine-added method is robust and minimizes disulfide scrambling artifacts produced during sample preparation.


Subject(s)
Antibodies, Monoclonal , Disulfides , Chromatography, Liquid , Humans , Peptide Mapping , Reproducibility of Results
7.
J Int Med Res ; 49(9): 3000605211042502, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34551601

ABSTRACT

OBJECTIVE: To investigate the risk factors of medication nonadherence in patients with type 2 diabetes mellitus (T2DM) and to establish a risk nomogram model. METHODS: This retrospective study enrolled patients with T2DM, which were divided into two groups based on their scores on the Morisky Medication Adherence scale. Univariate and multivariate logistic regression analyses were used to screen for independent risk factors for medication nonadherence. A risk model was then established using a nomogram. The accuracy of the prediction model was evaluated using centrality measurement index and receiver operating characteristic curves. Internal verification was evaluated using bootstrapping validation. RESULTS: A total of 338 patients with T2DM who included in the analysis. Logistic regression analysis showed that the educational level, monthly per capita income, drug affordability, the number of drugs used, daily doses of drugs and the time spent taking medicine were all independent risk factors for medication nonadherence. Based on these six risk factors, a nomogram model was established to predict the risk of medication nonadherence, which was shown to be very reliable. Bootstrapping validated the nonadherence nomogram model for patients with T2DM. CONCLUSIONS: This nomogram model could be used to evaluate the risks of drug nonadherence in patients with T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Nomograms , China , Diabetes Mellitus, Type 2/drug therapy , Humans , Medication Adherence , Retrospective Studies
8.
ACS Omega ; 6(29): 19269-19280, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34337264

ABSTRACT

The inflow profile is an important parameter to evaluate horizontal well productivity; however, quantitative interpretation of the inflow profile of the horizontal wells both accurately and cost-effectively is a common challenge faced by horizontal well production technology. The sustained-release chemical tracer is a new low-cost, long-lasting, and simple technique for monitoring the inflow profile in horizontal wells. In this study, a new type of sustained-release tracer is developed using bisphenol A-type epoxy resin as the polymer matrix and 2,6-difluorobenzoic acid, 3,4-difluorobenzoic acid, and 2,3,4,5-tetrafluorobenzoic acid as tracers. Meanwhile, the release mechanism and the influencing factors (chemistry of the tracer, temperature, salinity, and flow rate) of the sustained-release tracer are studied experimentally. The experimental results show that the release mechanism of the sustained-release tracer can be divided into two stages. The first stage involved the erosion process, in which the fluid gradually contacts and wraps the tracer, and the release rate is very fast. The second stage included the diffusion process, which is the diffusion-dissolution process once the fluid is completely wrapped around the tracer, and the release rate of this process is slow. The temperature is directly proportional to the release rate of the tracer, whereas salinity is inversely proportional to the release rate, and the fluid velocity does not affect the release rate. Finally, three kinds of sustained-release tracers are applied in the field, and a method to interpret the inflow profile of the sustained-release tracer is proposed. The result of application indicates that the sustained-release tracer developed in this study can efficiently monitor the inflow profile of the horizontal well.

9.
Anal Chem ; 93(10): 4383-4390, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33656852

ABSTRACT

Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for the analysis of host cell proteins (HCP) during antibody drug process development due to its sensitivity, selectivity, and adaptability. However, the enormous dynamic range between the therapeutic antibody and accompanying HCPs poses a significant challenge for LC-MS based detection of these low abundance impurities. To address this challenge, enrichment of HCPs via immunoaffinity, protein A, 2D-LC, or other strategies is typically performed. However, these enrichments are time-consuming and sometimes require a large quantity of sample. Here, we report a simple and sensitive strategy to analyze HCPs in therapeutic antibody samples without cumbersome enrichment by combining an ultra-low trypsin concentration during digestion under nondenaturing conditions, a long chromatographic gradient, and BoxCar acquisition (ULTLB) on a quadrupole-Orbitrap mass spectrometer. Application of this strategy to the NIST monoclonal antibody standard (NISTmAb) resulted in the identification of 453 mouse HCPs, which is a significant increase in the number of identified HCPs without enrichment compared to previous reports. Known amounts of HCPs were spiked into the purified antibody drug substance, demonstrating that the method sensitivity is as low as 0.5 ppm. Thus, the ULTLB method represents a sensitive and simple platform for deep profiling of HCPs in antibodies.


Subject(s)
Antibodies, Monoclonal , Digestion , Animals , Chromatography, Liquid , Mass Spectrometry , Mice , Trypsin
10.
ACS Sens ; 4(9): 2343-2350, 2019 09 27.
Article in English | MEDLINE | ID: mdl-31448586

ABSTRACT

Designing sensing materials with novel morphologies and compositions is eminently challenging to achieve high-performance gas sensor devices. Herein, an in situ oxidative polymerization approach is developed to construct three-dimensional (3D) hollow quasi-graphite capsules/polyaniline (GCs/PANI) hierarchical hybrids by decorating protonated PANI on the surface of GCs; as a result, an immensely active and sensitive material was developed for sensing ammonia gas at room temperature. Moreover, the GCs possessed a capsule-like hollow/open structure with partially graphitized walls, and PANI nanospheres were uniformly decorated on the GC surfaces. Furthermore, the inflexible and rigid 3D ordered chemistry of these materials provides the resulting hybrids with a large interfacial surface area, which not only allows for rapid adsorption and charge transfer but also provides the necessary structural stability. The 3D hollow GCs/PANI hybrids exhibit excellent performance; the GCs/PANI-3 hybrid is highly sensitive (with a response value of 1.30) toward 10 ppm NH3 gas and has short response and recovery times of 34 and 42 s, respectively. The GCs/PANI-3 hybrid also demonstrates a good selectivity, repeatability, and long-term stability, which are attributed to the substantial synergistic effect of the GCs and PANI. The design of such a unique 3D ordered framework provides a promising pathway to achieve room-temperature gas sensors for commercial applications.


Subject(s)
Ammonia/analysis , Aniline Compounds/chemistry , Chemistry Techniques, Analytical/instrumentation , Graphite/chemistry , Temperature , Capsules , Humidity
11.
Sci Rep ; 9(1): 7264, 2019 05 13.
Article in English | MEDLINE | ID: mdl-31086210

ABSTRACT

Hepcidin, a cysteine-rich peptide hormone, secreted mainly by the liver, plays a central role in iron metabolism regulation. Emerging evidence suggests that disordered iron metabolism is a risk factor for various types of diseases including cancers. However, it remains challenging to apply current mass spectrometry (MS)-based hepcidin assays for precise quantification due to the low fragmentation efficiency of intact hepcidin as well as synthesis difficulties for the intact hepcidin standard. To address these issues we recently developed a reliable sensitive targeted MS assay for hepcidin quantification from clinical samples that uses fully alkylated rather than intact hepcidin as the internal standard. Limits of detection and quantification were determined to be <0.5 ng/mL and 1 ng/mL, respectively. Application of the alkylated hepcidin assay to 70 clinical plasma samples (42 non-cancerous and 28 ovarian cancer patient samples) enabled reliable detection of endogenous hepcidin from the plasma samples, as well as conditioned culture media. The hepcidin concentrations ranged from 0.0 to 95.6 ng/mL across non-cancerous and cancer plasma specimens. Interestingly, cancer patients were found to have significantly higher hepcidin concentrations compared to non-cancerous patients (mean: 20.6 ng/ml for cancer; 5.94 ng/ml for non-cancerous) (p value < 0.001). Our results represent the first application of the alkylated hepcidin assay to clinical samples and demonstrate that the developed assay has better sensitivity and quantification accuracy than current MS-based hepcidin assays without the challenges in synthesis of intact hepcidin standard and accurately determining its absolute amount.


Subject(s)
Hepcidins/analysis , Mass Spectrometry/methods , Calibration , Chromatography, Liquid , Enzyme-Linked Immunosorbent Assay , Female , Hepcidins/blood , Humans , Limit of Detection , Ovarian Neoplasms/chemistry , Ovary/chemistry
12.
Materials (Basel) ; 12(7)2019 Mar 27.
Article in English | MEDLINE | ID: mdl-30934721

ABSTRACT

In order to improve the properties of lime-based mortars and promote the green development of the construction industry, blended lime-based mortars were prepared by using carbide slag instead of hydrated lime, and the additions of Portland cement and sulphoaluminate cement were studied in our work. The paper focused on mechanical properties, porosity, capillary water absorption and drying shrinkage of both types of blended mortars. The chemical composition and microstructure of hydration products were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that sulphoaluminate cement provided more contributions to mechanical properties, capillary water absorption and early shrinkage compared to Portland cement.

13.
Oncotarget ; 8(60): 101887-101898, 2017 Nov 24.
Article in English | MEDLINE | ID: mdl-29254211

ABSTRACT

Biomarkers for effective early diagnosis and prognosis of prostate cancer are still lacking. Multiplexed assays for cancer-associated proteins could be useful for identifying biomarkers for cancer detection and stratification. Herein, we report the development of sensitive targeted mass spectrometry assays for simultaneous quantification of 10 prostate cancer-associated proteins in urine. The diagnostic utility of these markers was evaluated with an initial cohort of 20 clinical urine samples. Individual marker concentration was normalized against the measured urinary prostate-specific antigen level as a reference of prostate-specific secretion. The areas under the receiver-operating characteristic curves for the 10 proteins ranged from 0.75 for CXL14 to 0.87 for CEAM5. Furthermore, MMP9 level was found to be significantly higher in patients with high Gleason scores, suggesting a potential of MMP9 as a marker for risk level assessment. Taken together, our work illustrated the feasibility of accurate multiplexed measurements of low-abundance cancer-associated proteins in urine and provided a viable path forward for preclinical verification of candidate biomarkers for prostate cancer.

14.
Anal Chem ; 89(17): 9139-9146, 2017 09 05.
Article in English | MEDLINE | ID: mdl-28724286

ABSTRACT

Mass spectrometry-based targeted proteomics (e.g., selected reaction monitoring, SRM) is emerging as an attractive alternative to immunoassays for protein quantification. Recently we have made significant progress in SRM sensitivity for enabling quantification of low nanograms per milliliter to sub-naograms per milliliter level proteins in nondepleted human blood plasma/serum without affinity enrichment. However, precise quantification of extremely low abundance proteins (e.g., ≤ 100 pg/mL in blood plasma/serum) using targeted proteomics approaches still remains challenging, especially for these samples without available antibodies for enrichment. To address this need, we have developed an antibody-independent deep-dive SRM (DD-SRM) approach that capitalizes on multidimensional high-resolution reversed-phase liquid chromatography (LC) separation for target peptide separation and enrichment combined with precise selection of target peptide fractions of interest, significantly improving SRM sensitivity by ∼5 orders of magnitude when compared to conventional LC-SRM. Application of DD-SRM to human serum and tissue provides precise quantification of endogenous proteins at the ∼10 pg/mL level in nondepleted serum and at <10 copies per cell level in tissue. Thus, DD-SRM holds great promise for precisely measuring extremely low abundance proteins or protein modifications, especially when high-quality antibodies are not available.


Subject(s)
Blood Proteins/chemistry , Immunoassay/methods , Mass Spectrometry/methods , Proteomics/methods , Antibodies , Chromatography, Reverse-Phase , Humans , Plasma/chemistry , Prostate-Specific Antigen/blood , Sensitivity and Specificity
15.
Sci Data ; 4: 170091, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28722704

ABSTRACT

Mass spectrometry (MS) based targeted proteomic methods such as selected reaction monitoring (SRM) are emerging as a promising tool for verification of candidate proteins in biological and biomedical applications. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) of the National Cancer Institute has investigated the standardization and analytical validation of the SRM assays and demonstrated robust analytical performance on different instruments across different laboratories. An Assay Portal has also been established by CPTAC to provide the research community a resource consisting of large sets of targeted MS-based assays, and a depository to share assays publicly. Herein, we report the development of 98 SRM assays that have been thoroughly characterized according to the CPTAC Assay Characterization Guidance Document; 37 of these passed all five experimental tests. The assays cover 70 proteins previously identified at the protein level in ovarian tumors. The experiments, methods and results for characterizing these SRM assays for their MS response, repeatability, selectivity, stability, and endogenous detection are described in detail. Data are available via PeptideAtlas, Panorama and the CPTAC Assay Portal.


Subject(s)
Ovarian Neoplasms , Proteogenomics , Proteomics , Female , Humans , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism
16.
J Proteome Res ; 16(2): 842-851, 2017 02 03.
Article in English | MEDLINE | ID: mdl-28076950

ABSTRACT

Cancers are initiated and developed from a small population of stem-like cells termed cancer stem cells (CSCs). There is heterogeneity among this CSC population that leads to multiple subpopulations with their own distinct biological features and protein expression. The protein expression and function may be impacted by amino acid variants that can occur largely due to single nucleotide changes. We have thus performed proteomic analysis of breast CSC subpopulations by mass spectrometry to study the presence of single amino acid variants (SAAVs) and their relation to breast cancer. We have used CSC markers to isolate pure breast CSC subpopulation fractions (ALDH+ and CD44+/CD24- cell populations) and the mature luminal cells (CD49f-EpCAM+) from the MCF-7 breast cancer cell line. By searching the Swiss-CanSAAVs database, 374 unique SAAVs were identified in total, where 27 are cancer-related SAAVs. 135 unique SAAVs were found in the CSC population compared with the mature luminal cells. The distribution of SAAVs detected in MCF-7 cells was compared with those predicted from the Swiss-CanSAAVs database, where we found distinct differences in the numbers of SAAVs detected relative to that expected from the Swiss-CanSAAVs database for several of the amino acids.


Subject(s)
Aldehyde Dehydrogenase/genetics , Amino Acid Substitution , Biomarkers, Tumor/genetics , CD24 Antigen/genetics , Hyaluronan Receptors/genetics , Neoplastic Stem Cells/metabolism , Aldehyde Dehydrogenase/metabolism , Amino Acid Sequence , Biomarkers, Tumor/metabolism , CD24 Antigen/metabolism , Cell Separation , Databases, Protein , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , Female , Gene Expression , Gene Ontology , Humans , Hyaluronan Receptors/metabolism , Integrin alpha6/genetics , Integrin alpha6/metabolism , MCF-7 Cells , Neoplastic Stem Cells/pathology , Protein Interaction Mapping
17.
Cell Rep ; 17(6): 1621-1631, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27806300

ABSTRACT

Even though hyperthermia is a promising treatment for cancer, the relationship between specific temperatures and clinical benefits and predictors of sensitivity of cancer to hyperthermia is poorly understood. Ovarian and uterine tumors have diverse hyperthermia sensitivities. Integrative analyses of the specific gene signatures and the differences in response to hyperthermia between hyperthermia-sensitive and -resistant cancer cells identified CTGF as a key regulator of sensitivity. CTGF silencing sensitized resistant cells to hyperthermia. CTGF small interfering RNA (siRNA) treatment also sensitized resistant cancers to localized hyperthermia induced by copper sulfide nanoparticles and near-infrared laser in orthotopic ovarian cancer models. CTGF silencing aggravated energy stress induced by hyperthermia and enhanced apoptosis of hyperthermia-resistant cancers.


Subject(s)
Connective Tissue Growth Factor/metabolism , Hyperthermia, Induced , Ovarian Neoplasms/metabolism , Uterine Neoplasms/metabolism , Animals , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Silencing , Genes, Neoplasm , Humans , Mice , Models, Biological , Ovarian Neoplasms/genetics , Proteomics , Uterine Neoplasms/genetics
18.
Mol Cell Proteomics ; 15(12): 3694-3705, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27670688

ABSTRACT

Current proteomic approaches include both broad discovery measurements and quantitative targeted analyses. In many cases, discovery measurements are initially used to identify potentially important proteins (e.g. candidate biomarkers) and then targeted studies are employed to quantify a limited number of selected proteins. Both approaches, however, suffer from limitations. Discovery measurements aim to sample the whole proteome but have lower sensitivity, accuracy, and quantitation precision than targeted approaches, whereas targeted measurements are significantly more sensitive but only sample a limited portion of the proteome. Herein, we describe a new approach that performs both discovery and targeted monitoring (DTM) in a single analysis by combining liquid chromatography, ion mobility spectrometry and mass spectrometry (LC-IMS-MS). In DTM, heavy labeled target peptides are spiked into tryptic digests and both the labeled and unlabeled peptides are detected using LC-IMS-MS instrumentation. Compared with the broad LC-MS discovery measurements, DTM yields greater peptide/protein coverage and detects lower abundance species. DTM also achieved detection limits similar to selected reaction monitoring (SRM) indicating its potential for combined high quality discovery and targeted analyses, which is a significant step toward the convergence of discovery and targeted approaches.


Subject(s)
Breast Neoplasms/metabolism , Peptides/analysis , Proteome/isolation & purification , Proteomics/methods , Animals , Chromatography, Liquid/methods , Female , Humans , Mass Spectrometry/methods , Mice , Neoplasm Transplantation
19.
Cell ; 166(3): 755-765, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27372738

ABSTRACT

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Subject(s)
Neoplasm Proteins/genetics , Neoplasms, Cystic, Mucinous, and Serous/genetics , Ovarian Neoplasms/genetics , Proteome , Acetylation , Chromosomal Instability , DNA Repair , DNA, Neoplasm , Female , Gene Dosage , Humans , Mass Spectrometry , Phosphoproteins/genetics , Protein Processing, Post-Translational , Survival Analysis
20.
Proteomics ; 16(15-16): 2160-82, 2016 08.
Article in English | MEDLINE | ID: mdl-27302376

ABSTRACT

Targeted proteomics technique has emerged as a powerful protein quantification tool in systems biology, biomedical research, and increasing for clinical applications. The most widely used targeted proteomics approach, selected reaction monitoring (SRM), also known as multiple reaction monitoring (MRM), can be used for quantification of cellular signaling networks and preclinical verification of candidate protein biomarkers. As an extension to our previous review on advances in SRM sensitivity (Shi et al., Proteomics, 12, 1074-1092, 2012) herein we review recent advances in the method and technology for further enhancing SRM sensitivity (from 2012 to present), and highlighting its broad biomedical applications in human bodily fluids, tissue and cell lines. Furthermore, we also review two recently introduced targeted proteomics approaches, parallel reaction monitoring (PRM) and data-independent acquisition (DIA) with targeted data extraction on fast scanning high-resolution accurate-mass (HR/AM) instruments. Such HR/AM targeted quantification with monitoring all target product ions addresses SRM limitations effectively in specificity and multiplexing; whereas when compared to SRM, PRM and DIA are still in the infancy with a limited number of applications. Thus, for HR/AM targeted quantification we focus our discussion on method development, data processing and analysis, and its advantages and limitations in targeted proteomics. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale quantification of hundreds of target proteins are discussed.


Subject(s)
Mass Spectrometry/methods , Proteomics/methods , Animals , Biomarkers/analysis , Biomarkers/blood , Humans , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...