Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Physiol ; 14: 1164926, 2023.
Article in English | MEDLINE | ID: mdl-37008004

ABSTRACT

Introduction: Eicosanoids are bioactive lipids present in packed red blood cells (PRBCs), and might play a role in transfusion-related immunomodulation (TRIM). We tested the feasibility of analyzing eicosanoid profiles in PRBC supernatant and in plasma samples of postoperative intensive care unit (ICU) patients transfused with one unit of PRBCs. Methods: We conducted a prospective, observational feasibility study enrolling postoperative ICU patients: 1) patients treated with acetylsalicylic acid following abdominal aortic surgery (Aorta); 2) patients on immunosuppressants after bilateral lung transplantation (LuTx); and 3) patients undergoing other types of major surgery (Comparison). Abundances of arachidonic acid (AA) and seven pre-defined eicosanoids were assessed by liquid chromatography and tandem mass spectrometry. PRBC supernatant was sampled directly from the unit immediately prior to transfusion. Spearman's correlations between eicosanoid abundance in PRBCs and storage duration were assessed. Patient plasma was collected at 30-min intervals: Three times each before and after transfusion. To investigate temporal changes in eicosanoid abundances, we fitted linear mixed models. Results: Of 128 patients screened, 21 were included in the final analysis (Aorta n = 4, LuTx n = 8, Comparison n = 9). In total, 21 PRBC and 125 plasma samples were analyzed. Except for 20-hydroxyeicosatetraenoic acid (HETE), all analyzed eicosanoids were detectable in PRBCs, and their abundance positively correlated with storage duration of PRBCs. While 5-HETE, 12-HETE/8-HETE, 15-HETE, 20-HETE, and AA were detectable in virtually all plasma samples, 9-HETE and 11-HETE were detectable in only 57% and 23% of plasma samples, respectively. Conclusions: Recruitment of ICU patients into this transfusion study was challenging but feasible. Eicosanoid abundances increased in PRBC supernatants during storage. In plasma of ICU patients, eicosanoid abundances were ubiquitously detectable and showed limited fluctuations over time prior to transfusion. Taken together, larger clinical studies seem warranted and feasible to further investigate the role of PRBC-derived eicosanoids in TRIM.

2.
Biomolecules ; 12(9)2022 09 07.
Article in English | MEDLINE | ID: mdl-36139096

ABSTRACT

Pathogen inactivation techniques for blood products have been implemented to optimize clinically safe blood components supply. The INTERCEPT system uses amotosalen together with ultraviolet light wavelength A (UVA) irradiation. Irradiation-induced inactivation of nucleic acids may actually be accompanied by modifications of chemically reactive polyunsaturated fatty acids known to be important mediators of platelet functions. Thus, here, we investigated eicosanoids and the related fatty acids released upon treatment and during storage of platelet concentrates for 7 days, complemented by the analysis of functional and metabolic consequences of these treatments. Metabolic and functional issues like glucose consumption, lactate formation, platelet aggregation, and clot firmness hardly differed between the two treatment groups. In contrast to gamma irradiation, here, we demonstrated that INTERCEPT treatment immediately caused new formation of trans-arachidonic acid isoforms, while 11-hydroxyeicosatetraenoic acid (11-HETE) and 15-HETE were increased and two hydroperoxyoctadecadienoic acid (HpODE) isoforms decreased. During further storage, these alterations remained stable, while the release of 12-lipoxygenase (12-LOX) products such as 12-HETE and 12-hydroxyeicosapentaenoic acid (12-HEPE) was further attenuated. In vitro synthesis of trans-arachidonic acid isoforms suggested that thiol radicals formed by UVA treatment may be responsible for the INTERCEPT-specific effects observed in platelet concentrates. It is reasonable to assume that UVA-induced molecules may have specific biological effects which need to be further investigated.


Subject(s)
Arachidonic Acids , Nucleic Acids , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology , Arachidonate 12-Lipoxygenase/metabolism , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Arachidonic Acids/metabolism , Blood Platelets , Glucose/metabolism , Hydroxyeicosatetraenoic Acids/metabolism , Hydroxyeicosatetraenoic Acids/pharmacology , Lactates/metabolism , Nucleic Acids/metabolism , Sulfhydryl Compounds/metabolism
3.
Nat Commun ; 12(1): 5993, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645808

ABSTRACT

Metabolic biomonitoring in humans is typically based on the sampling of blood, plasma or urine. Although established in the clinical routine, these sampling procedures are often associated with a variety of compliance issues, which are impeding time-course studies. Here, we show that the metabolic profiling of the minute amounts of sweat sampled from fingertips addresses this challenge. Sweat sampling from fingertips is non-invasive, robust and can be accomplished repeatedly by untrained personnel. The sweat matrix represents a rich source for metabolic phenotyping. We confirm the feasibility of short interval sampling of sweat from the fingertips in time-course studies involving the consumption of coffee or the ingestion of a caffeine capsule after a fasting interval, in which we successfully monitor all known caffeine metabolites as well as endogenous metabolic responses. Fluctuations in the rate of sweat production are accounted for by mathematical modelling to reveal individual rates of caffeine uptake, metabolism and clearance. To conclude, metabotyping using sweat from fingertips combined with mathematical network modelling shows promise for broad applications in precision medicine by enabling the assessment of dynamic metabolic patterns, which may overcome the limitations of purely compositional biomarkers.


Subject(s)
Biological Monitoring/methods , Coffee/metabolism , Metabolomics/methods , Sweat/chemistry , Adult , Biological Monitoring/standards , Biotransformation , Caffeine/analysis , Caffeine/metabolism , Chlorogenic Acid/analysis , Chlorogenic Acid/metabolism , Chromatography, Liquid , Female , Fingers , Humans , Male , Metabolomics/standards , Middle Aged , Principal Component Analysis , Tandem Mass Spectrometry , Theobromine/analysis , Theobromine/metabolism , Theophylline/analysis , Theophylline/metabolism
4.
Biomolecules ; 11(1)2021 01 15.
Article in English | MEDLINE | ID: mdl-33467719

ABSTRACT

Reproducibility issues regarding in vitro cell culture experiments are related to genetic fluctuations and batch-wise variations of biological materials such as fetal calf serum (FCS). Genome sequencing may control the former, while the latter may remain unrecognized. Using a U937 macrophage model for cell differentiation and inflammation, we investigated whether the formation of effector molecules was dependent on the FCS batch used for cultivation. High resolution mass spectrometry (HRMS) was used to identify FCS constituents and to explore their effects on cultured cells evaluating secreted cytokines, eicosanoids, and other inflammatory mediators. Remarkably, the FCS eicosanoid composition showed more batch-dependent variations than the protein composition. Efficient uptake of fatty acids from the medium by U937 macrophages and inflammation-induced release thereof was evidenced using C13-labelled arachidonic acid, highlighting rapid lipid metabolism. For functional testing, FCS batch-dependent nanomolar concentration differences of two selected eicosanoids, 5-HETE and 15-HETE, were balanced out by spiking. Culturing U937 cells at these defined conditions indeed resulted in significant proteome alterations indicating HETE-induced PPARγ activation, independently corroborated by HETE-induced formation of peroxisomes observed by high-resolution microscopy. In conclusion, the present data demonstrate that FCS-contained eicosanoids, subject to substantial batch-wise variation, may modulate cellular effector functions in cell culture experiments.


Subject(s)
Cell Culture Techniques , Eicosanoids/metabolism , Serum Albumin, Bovine/chemistry , Fatty Acids/analysis , Humans , Hydroxyeicosatetraenoic Acids , Macrophages/metabolism , Peroxisomes/metabolism , Reproducibility of Results , U937 Cells
5.
Cancers (Basel) ; 12(6)2020 May 26.
Article in English | MEDLINE | ID: mdl-32466393

ABSTRACT

Molecular classification of medulloblastoma (MB) is well-established and reflects the cell origin and biological properties of tumor cells. However, limited data is available regarding the MB tumor microenvironment. Here, we present a mass spectrometry-based multi-omics pilot study of cerebrospinal fluid (CSF) from recurrent MB patients. A group of age-matched patients without a neoplastic disease was used as control cohort. Proteome profiling identified characteristic tumor markers, including FSTL5, ART3, and FMOD, and revealed a strong prevalence of anti-inflammatory and tumor-promoting proteins characteristic for alternatively polarized myeloid cells in MB samples. The up-regulation of ADAMTS1, GAP43 and GPR37 indicated hypoxic conditions in the CSF of MB patients. This notion was independently supported by metabolomics, demonstrating the up-regulation of tryptophan, methionine, serine and lysine, which have all been described to be induced upon hypoxia in CSF. While cyclooxygenase products were hardly detectable, the epoxygenase product and beta-oxidation promoting lipid hormone 12,13-DiHOME was found to be strongly up-regulated. Taken together, the data suggest a vicious cycle driven by autophagy, the formation of 12,13-DiHOME and increased beta-oxidation, thus promoting a metabolic shift supporting the formation of drug resistance and stem cell properties of MB cells. In conclusion, the different omics-techniques clearly synergized and mutually supported a novel model for a specific pathomechanism.

6.
J Clin Endocrinol Metab ; 105(7)2020 07 01.
Article in English | MEDLINE | ID: mdl-32343312

ABSTRACT

BACKGROUND: Accumulating evidence links brown adipose tissue (BAT) to increased cold-induced energy expenditure (CIEE) and regulation of lipid metabolism in humans. BAT has also been proposed as a novel source for biologically active lipid mediators including polyunsaturated fatty acids (PUFAs) and oxylipins. However, little is known about cold-mediated differences in energy expenditure and various lipid species between individuals with detectable BAT positive (BATpos) and those without BAT negative (BATneg). METHODS: Here we investigated a unique cohort of matched BATpos and BATneg individuals identified by 18F-fluorodeoxyglucose positron emission tomography combined with computed tomography ([18F]-FDG PET/CT). BAT function, CIEE, and circulating oxylipins, were analyzed before and after short-term cold exposure using [18F]-FDG PET/CT, indirect calorimetry, and high-resolution mass spectrometry, respectively. RESULTS: We found that active BAT is the major determinant of CIEE since only BATpos individuals experienced significantly increased energy expenditure in response to cold. A single bout of moderate cold exposure resulted in the dissipation of an additional 20 kcal excess energy in BATpos but not in BATneg individuals. The presence of BAT was associated with a unique systemic PUFA and oxylipin profile characterized by increased levels of anti-inflammatory omega-3 fatty acids as well as cytochrome P450 products but decreased concentrations of some proinflammatory hydroxyeicosatetraenoic acids when compared with BATneg individuals. Notably, cold exposure raised circulating levels of various lipids, including the recently identified BAT-derived circulating factors (BATokines) DiHOME and 12-HEPE, only in BATpos individuals. CONCLUSIONS: In summary, our data emphasize that BAT in humans is a major contributor toward cold-mediated energy dissipation and a critical organ in the regulation of the systemic lipid pool.


Subject(s)
Adipose Tissue, Brown/diagnostic imaging , Energy Metabolism/physiology , Oxylipins/blood , Adult , Calorimetry, Indirect , Cold Temperature , Fatty Acids, Unsaturated/blood , Female , Fluorodeoxyglucose F18 , Humans , Lipid Metabolism/physiology , Male , Positron Emission Tomography Computed Tomography , Thermogenesis/physiology
7.
Cells ; 9(4)2020 03 31.
Article in English | MEDLINE | ID: mdl-32244540

ABSTRACT

The proliferation of molds in domestic environments can lead to uncontrolled continuous exposure to mycotoxins. Even if not immediately symptomatic, this may result in chronic effects, such as, for instance, immunosuppression or allergenic promotion. Alternariol (AOH) is one of the most abundant mycotoxins produced by Alternariaalternata fungi, proliferating among others in fridges, as well as in humid walls. AOH was previously reported to have immunomodulatory potential. However, molecular mechanisms sustaining this effect remained elusive. In differentiated THP-1 macrophages, AOH hardly altered the secretion of pro-inflammatory mediators when co-incubated with lipopolysaccharide (LPS), opening up the possibility that the immunosuppressive potential of the toxin could be related to an alteration of a downstream pro-inflammatory signaling cascade. Intriguingly, the mycotoxin affected the membrane fluidity in macrophages and it synergistically reacted with the cholesterol binding agent MßCD. In silico modelling revealed the potential of the mycotoxin to intercalate in cholesterol-rich membrane domains, like caveolae, and immunofluorescence showed the modified interplay of caveolin-1 with Toll-like Receptor (TLR) 4. In conclusion, we identified the structural similarity with cholesterol as one of the key determinants of the immunomodulatory potential of AOH.


Subject(s)
Cholesterol/chemistry , Immunomodulation , Lactones/chemistry , Mycotoxins/chemistry , Caveolin 1/metabolism , Cell Membrane/drug effects , Cell Membrane/metabolism , Fatty Acids, Unsaturated/metabolism , Humans , Immunomodulation/drug effects , Lactones/pharmacology , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Membrane Fluidity/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oxylipins/metabolism , Superoxides/metabolism , THP-1 Cells , Toll-Like Receptor 4/metabolism , beta-Cyclodextrins/pharmacology
8.
Int J Cancer ; 147(6): 1680-1693, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32064608

ABSTRACT

Ponatinib is a small molecule multi-tyrosine kinase inhibitor clinically approved for anticancer therapy. Molecular mechanisms by which cancer cells develop resistance against ponatinib are currently poorly understood. Likewise, intracellular drug dynamics, as well as potential microenvironmental factors affecting the activity of this compound are unknown. Cell/molecular biological and analytical chemistry methods were applied to investigate uptake kinetics/subcellular distribution, the role of lipid droplets (LDs) and lipoid microenvironment compartments in responsiveness of FGFR1-driven lung cancer cells toward ponatinib. Selection of lung cancer cells for acquired ponatinib resistance resulted in elevated intracellular lipid levels. Uncovering intrinsic ponatinib fluorescence enabled dissection of drug uptake/retention kinetics in vitro as well as in mouse tissue cryosections, and revealed selective drug accumulation in LDs of cancer cells. Pharmacological LD upmodulation or downmodulation indicated that the extent of LD formation and consequent ponatinib incorporation negatively correlated with anticancer drug efficacy. Co-culturing with adipocytes decreased ponatinib levels and fostered survival of cancer cells. Ponatinib-selected cancer cells exhibited increased LD levels and enhanced ponatinib deposition into this organelle. Our findings demonstrate intracellular deposition of the clinically approved anticancer compound ponatinib into LDs. Furthermore, increased LD biogenesis was identified as adaptive cancer cell-defense mechanism via direct drug scavenging. Together, this suggests that LDs represent an underestimated organelle influencing intracellular pharmacokinetics and activity of anticancer tyrosine kinase inhibitors. Targeting LD integrity might constitute a strategy to enhance the activity not only of ponatinib, but also other clinically approved, lipophilic anticancer therapeutics.


Subject(s)
Drug Resistance, Neoplasm , Imidazoles/pharmacokinetics , Lipid Droplets/metabolism , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacokinetics , Pyridazines/pharmacokinetics , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Imidazoles/therapeutic use , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Protein Kinase Inhibitors/therapeutic use , Pyridazines/therapeutic use , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Signal Transduction , Tumor Microenvironment , Xenograft Model Antitumor Assays
9.
Mol Cell Proteomics ; 19(3): 478-489, 2020 03.
Article in English | MEDLINE | ID: mdl-31892524

ABSTRACT

The prediction of metastatic properties from molecular analyses still poses a major challenge. Here we aimed at the classification of metastasis-related cell properties by proteome profiling making use of cutaneous and brain-metastasizing variants from single melanomas sharing the same genetic ancestry. Previous experiments demonstrated that cultured cells derived from these xenografted variants maintain a stable phenotype associated with a differential metastatic behavior: The brain metastasizing variants produce more spontaneous micro-metastases than the corresponding cutaneous variants. Four corresponding pairs of cutaneous and metastatic cells were obtained from four individual patients, resulting in eight cell-lines presently investigated. Label free proteome profiling revealed significant differences between corresponding pairs of cutaneous and cerebellar metastases from the same patient. Indeed, each brain metastasizing variant expressed several apparently metastasis-associated proteomic alterations as compared with the corresponding cutaneous variant. Among the differentially expressed proteins we identified cell adhesion molecules, immune regulators, epithelial to mesenchymal transition markers, stem cell markers, redox regulators and cytokines. Similar results were observed regarding eicosanoids, considered relevant for metastasis, such as PGE2 and 12-HETE. Multiparametric morphological analysis of cells also revealed no characteristic alterations associated with the cutaneous and brain metastasis variants. However, no correct classification regarding metastatic potential was yet possible with the present data. We thus concluded that molecular profiling is able to classify cells according to known functional categories but is not yet able to predict relevant cell properties emerging from networks consisting of many interconnected molecules. The presently observed broad diversity of molecular patterns, irrespective of restricting to one tumor type and two main classes of metastasis, highlights the important need to develop meta-analysis strategies to predict cell properties from molecular profiling data. Such base knowledge will greatly support future individualized precision medicine approaches.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Melanoma/metabolism , Skin Neoplasms/metabolism , Animals , Brain Neoplasms/secondary , Cell Line, Tumor , Cytoplasm/metabolism , Heterografts , Humans , Male , Melanoma/pathology , Mice, Nude , Proteome , Proteomics , Skin Neoplasms/pathology
10.
Front Pharmacol ; 10: 727, 2019.
Article in English | MEDLINE | ID: mdl-31354474

ABSTRACT

While genetic traits and epigenetic modifications mainly encode cell type-specific effector functions, the eventual outcome is also prone to modulation by post-transcriptional regulation mechanisms. T cells are a powerful model for the investigation of such modulatory effects, as common precursor cells may differentiate either to helper CD4+ T cells or cytotoxic CD8+ cells, which elicit distinct functionalities upon TCR-stimulation. Human primary CD4+ and CD8+ T cells were purified from three individual donors and activated with anti-CD3/CD28 antibodies. Associated proteome alterations were analyzed by high-resolution mass spectrometry using a label-free shotgun approach. Metabolic activation was indicated by upregulation of enzymes related to glycolysis, NADH production, fatty acid synthesis, and uptake as well as amino acid and iron uptake. Besides various inflammatory effector molecules, the mitochondrial proteins CLUH, TFAM, and TOMM34 were found specifically induced in CD4+ T cells. Investigation of overrepresented conserved transcription binding sites by the oPOSSUM software suggested interferon type I inducer IRF1 to cause many of the observed proteome alterations in CD4+ T cells. RT qPCR demonstrated the specific induction of IRF1 in CD4+ T cells only. While the interferon regulatory factor IRF4 was found induced in both T cell subtypes at protein and mRNA level, IRF9 and the type I interferon-induced proteins IFIT1, IFIT3, and MX1 were only found induced in CD4+ T cells. As oxidative stress enhances mitochondrial DNA-dependent type I interferon responses, the present data suggested that mitochondrial activities regulate those cell type-specific signaling pathways. Indeed, we detected mitochondrial superoxide formation predominantly in CD4+ T cells via FACS analysis with MitoSOX™ and confirmed this observation by live cell imaging with confocal microscopy. As interferon signaling regulates important features such as resistance regarding immune checkpoint blockade therapy, the present data may identify potential new targets for the efficient control of highly relevant immune cell properties.

11.
Anal Chem ; 89(3): 1945-1954, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28208246

ABSTRACT

During inflammation, proteins and lipids act in a concerted fashion, calling for combined analyses. Fibroblasts are powerful mediators of chronic inflammation. However, little is known about eicosanoid formation by human fibroblasts. The aim of this study was to analyze the formation of the most relevant inflammation mediators including proteins and lipids in human fibroblasts upon inflammatory stimulation and subsequent treatment with dexamethasone, a powerful antiphlogistic drug. Label-free quantification was applied for proteome profiling, while an in-house established data-dependent analysis method based on high-resolution mass spectrometry was applied for eicosadomics. Furthermore, a set of 188 metabolites was determined by targeted analysis. The secretion of 40 proteins including cytokines, proteases, and other inflammation agonists as well as 14 proinflammatory and nine anti-inflammatory eicosanoids was found significantly induced, while several acylcarnithins and sphingomyelins were found significantly downregulated upon inflammatory stimulation. Treatment with dexamethasone downregulated most cytokines and proteases, abrogated the formation of pro- but also anti-inflammatory eicosanoids, and restored normal levels of acylcarnithins but not of sphingomyelins. In addition, the chemokines CXCL1, CXCL5, CXCL6, and complement C3, known to contribute to chronic inflammation, were not counter-regulated by dexamethasone. Similar findings were obtained with human mesenchymal stem cells, and results were confirmed by targeted analysis with multiple reaction monitoring. Comparative proteome profiling regarding other cells demonstrated cell-type-specific synthesis of, among others, eicosanoid-forming enzymes as well as relevant transcription factors, allowing us to better understand cell-type-specific regulation of inflammation mediators and shedding new light on the role of fibroblasts in chronic inflammation.


Subject(s)
Eicosanoids/metabolism , Fibroblasts/metabolism , Inflammation/metabolism , Metabolomics , Proteome , Anti-Inflammatory Agents/pharmacology , Cells, Cultured , Chemokines/metabolism , Chromatography, Liquid/methods , Chronic Disease , Cytokines/metabolism , Dexamethasone/pharmacology , Fibroblasts/drug effects , Humans , Inflammation/blood , Inflammation/pathology , Inflammation Mediators/metabolism , Leukocytes, Mononuclear/metabolism , Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...