Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
G3 (Bethesda) ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39197015

ABSTRACT

The ability to predict the outcome of selection and mating decisions enables breeders to make strategically better selection decisions. To improve genetic progress, those individuals need to be selected whose offspring can be expected to show high genetic variance next to high breeding values. Previously published approaches enable to predict the variance of descendants of two future generations for up to 4 founding haplotypes, or 2 outbred individuals, based on phased genotypes, allele effects and recombination frequencies. The purpose of this study was to develop a general approach for the analytical calculation of the genetic variance in any future generation. The core development is an equation for the prediction of the variance of double haploid lines, under the assumption of no selection and negligible drift, stemming from an arbitrary number of founder haplotypes. This double haploid variance can be decomposed into gametic Mendelian sampling variances (MSV) of ancestors of the double haploid lines allowing usage for non-double haploid genotypes which enables application in animal breeding programs as well as in plant breeding programs. Together with the breeding values of the founders, the gametic MSV may be used in new selection criteria. We present our idea of such a criterion that describes the genetic level of selected individuals in four generations. Since breeding programs do select, the assumption made for predicting variances is clearly violated which decreases the accuracy of predicted gametic MSV caused by changes in allele frequency and linkage disequilibrium. Despite violating the assumption, we found high predictive correlations of our criterion to the true genetic level which was obtained by means of simulation for the "corn" and "cattle" genome models tested in this study (0.90 and 0.97). In practice, the genotype phases, genetic map and allele effects all need to be estimated meaning inaccuracies in their estimation will lead to inaccurate variance prediction. Investigation of variance prediction accuracy when input parameters are estimated was not part of this study.

2.
Genet Sel Evol ; 56(1): 41, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773363

ABSTRACT

BACKGROUND: Breeding programs are judged by the genetic level of animals that are used to disseminate genetic progress. These animals are typically the best ones of the population. To maximise the genetic level of very good animals in the next generation, parents that are more likely to produce top performing offspring need to be selected. The ability of individuals to produce high-performing progeny differs because of differences in their breeding values and gametic variances. Differences in gametic variances among individuals are caused by differences in heterozygosity and linkage. The use of the gametic Mendelian sampling variance has been proposed before, for use in the usefulness criterion or Index5, and in this work, we extend existing approaches by not only considering the gametic Mendelian sampling variance of individuals, but also of their potential offspring. Thus, the criteria developed in this study plan one additional generation ahead. For simplicity, we assumed that the true quantitative trait loci (QTL) effects, genetic map and the haplotypes of all animals are known. RESULTS: In this study, we propose a new selection criterion, ExpBVSelGrOff, which describes the genetic level of selected grand-offspring that are produced by selected offspring of a particular mating. We compare our criterion with other published criteria in a stochastic simulation of an ongoing breeding program for 21 generations for proof of concept. ExpBVSelGrOff performed better than all other tested criteria, like the usefulness criterion or Index5 which have been proposed in the literature, without compromising short-term gains. After only five generations, when selection is strong (1%), selection based on ExpBVSelGrOff achieved 5.8% more commercial genetic gain and retained 25% more genetic variance without compromising inbreeding rate compared to selection based only on breeding values. CONCLUSIONS: Our proposed selection criterion offers a new tool to accelerate genetic progress for contemporary genomic breeding programs. It retains more genetic variance than previously published criteria that plan less far ahead. Considering future gametic Mendelian sampling variances in the selection process also seems promising for maintaining more genetic variance.


Subject(s)
Models, Genetic , Quantitative Trait Loci , Selection, Genetic , Animals , Breeding/methods , Female , Male , Selective Breeding
SELECTION OF CITATIONS
SEARCH DETAIL