Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 293
Filter
1.
Pediatr Res ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977796

ABSTRACT

BACKGROUND: Preterm birth and formula feeding increase the risk of necrotizing enterocolitis (NEC), a gut inflammatory disease known to be associated with gut microbiota (GM) changes in infants. Supplemental bovine colostrum may protect against formula-induced NEC via GM changes. We hypothesised that feeding colostrum before, after, or during formula feeding affects NEC sensitivity via changes to GM. METHODS: Colonic GM (profiled by 16S ribosomal RNA gene amplicon sequencing) was compared in preterm pigs fed colostrum for 4 days, either before, after, or together with formula feeding for 4 days. Correlations between GM and gut parameters were assessed on day 5 or 9. RESULTS: Both exclusive and partial colostrum feeding induced higher GM diversity, lower Enterococcus abundance, and improved intestinal maturation parameters (villus structure, digestive enzyme activities, permeability), relative to exclusive formula feeding (all p < 0.05). Across feeding regimens, Enterococcus abundance was inversely correlated with intestinal maturation parameters. Conversely, there was no correlation between GM changes and early NEC lesions. CONCLUSION: Bovine colostrum inhibits formula-induced Enterococcus overgrowth and gut dysfunctions just after preterm birth but these effects are not causally linked. Optimising diet-related host responses, not GM, may be critical to prevent NEC in preterm newborn pigs and infants. IMPACT: Supplement of bovine colostrum to formula feeding modified the gut microbiota by increasing species diversity and reducing Enterococcus abundance, while concurrently improving intestinal functions in preterm pigs. Diet-related changes to the gut microbiota were not clearly associated with development of necrotizing enterocolitis (NEC) in preterm pigs, suggesting that diet-related gut microbiota effects are not critical for diet-related NEC protection. The study highlights the potential to use bovine colostrum as a supplement to formula feeding for preterm infants lacking human milk.

2.
Microbiome ; 12(1): 119, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951925

ABSTRACT

BACKGROUND: Fecal microbiota transplantation (FMT) and fecal virome transplantation (FVT, sterile filtrated donor feces) have been effective in treating recurrent Clostridioides difficile infections, possibly through bacteriophage-mediated modulation of the gut microbiome. However, challenges like donor variability, costly screening, coupled with concerns over pathogen transfer (incl. eukaryotic viruses) with FMT or FVT hinder their wider clinical application in treating less acute diseases. METHODS: To overcome these challenges, we developed methods to broaden FVT's clinical application while maintaining efficacy and increasing safety. Specifically, we employed the following approaches: (1) chemostat-fermentation to reproduce the bacteriophage FVT donor component and remove eukaryotic viruses (FVT-ChP), (2) solvent-detergent treatment to inactivate enveloped viruses (FVT-SDT), and (3) pyronin-Y treatment to inhibit RNA virus replication (FVT-PyT). We assessed the efficacy of these processed FVTs in a C. difficile infection mouse model and compared them with untreated FVT (FVT-UnT), FMT, and saline. RESULTS: FVT-SDT, FVT-UnT, and FVT-ChP reduced the incidence of mice reaching the humane endpoint (0/8, 2/7, and 3/8, respectively) compared to FMT, FVT-PyT, and saline (5/8, 7/8, and 5/7, respectively) and significantly reduced the load of colonizing C. difficile cells and associated toxin A/B levels. There was a potential elimination of C. difficile colonization, with seven out of eight mice treated with FVT-SDT testing negative with qPCR. In contrast, all other treatments exhibited the continued presence of C. difficile. Moreover, the results were supported by changes in the gut microbiome profiles, cecal cytokine levels, and histopathological findings. Assessment of viral engraftment following FMT/FVT treatment and host-phage correlations analysis suggested that transfer of phages likely were an important contributing factor associated with treatment efficacy. CONCLUSIONS: This proof-of-concept study shows that specific modifications of FVT hold promise in addressing challenges related to donor variability and infection risks. Two strategies lead to treatments significantly limiting C. difficile colonization in mice, with solvent/detergent treatment and chemostat propagation of donor phages emerging as promising approaches. Video Abstract.


Subject(s)
Bacteriophages , Clostridioides difficile , Clostridium Infections , Fecal Microbiota Transplantation , Feces , Gastrointestinal Microbiome , Fecal Microbiota Transplantation/methods , Animals , Mice , Bacteriophages/physiology , Bacteriophages/isolation & purification , Clostridium Infections/therapy , Clostridium Infections/microbiology , Feces/microbiology , Feces/virology , Disease Models, Animal , Humans , Mice, Inbred C57BL , Female
3.
Nat Commun ; 15(1): 4704, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830845

ABSTRACT

Metabolic syndrome encompasses amongst other conditions like obesity and type-2 diabetes and is associated with gut microbiome (GM) dysbiosis. Fecal microbiota transplantation (FMT) has been explored to treat metabolic syndrome by restoring the GM; however, concerns on accidentally transferring pathogenic microbes remain. As a safer alternative, fecal virome transplantation (FVT, sterile-filtrated feces) has the advantage over FMT in that mainly bacteriophages are transferred. FVT from lean male donors have shown promise in alleviating the metabolic effects of high-fat diet in a preclinical mouse study. However, FVT still carries the risk of eukaryotic viral infections. To address this, recently developed methods are applied for removing or inactivating eukaryotic viruses in the viral component of FVT. Modified FVTs are compared with unmodified FVT and saline in a diet-induced obesity model on male C57BL/6 N mice. Contrasted with obese control, mice administered a modified FVT (nearly depleted for eukaryotic viruses) exhibits enhanced blood glucose clearance but not weight loss. The unmodified FVT improves liver pathology and reduces the proportions of immune cells in the adipose tissue with a non-uniform response. GM analysis suggests that bacteriophage-mediated GM modulation influences outcomes. Optimizing these approaches could lead to the development of safe bacteriophage-based therapies targeting metabolic syndrome through GM restoration.


Subject(s)
Diet, High-Fat , Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Metabolic Syndrome , Mice, Inbred C57BL , Mice, Obese , Obesity , Virome , Animals , Male , Metabolic Syndrome/therapy , Obesity/therapy , Mice , Diet, High-Fat/adverse effects , Dysbiosis/therapy , Feces/virology , Feces/microbiology , Bacteriophages/physiology , Blood Glucose/metabolism , Disease Models, Animal , Liver/pathology , Liver/metabolism , Adipose Tissue
4.
Gut Microbes ; 16(1): 2370917, 2024.
Article in English | MEDLINE | ID: mdl-38944838

ABSTRACT

Polyphenols are phytochemicals commonly found in plant-based diets which have demonstrated immunomodulatory and anti-inflammatory properties. However, the interplay between polyphenols and pathogens at mucosal barrier surfaces has not yet been elucidated in detail. Here, we show that proanthocyanidin (PAC) polyphenols interact with gut parasites to influence immune function and gut microbial-derived metabolites in mice. PAC intake inhibited mastocytosis during infection with the small intestinal roundworm Heligmosomoides polygyrus, and altered the host tissue transcriptome at the site of infection with the large intestinal whipworm Trichuris muris, with a notable enhancement of type-1 inflammatory and interferon-driven gene pathways. In the absence of infection, PAC intake promoted the expansion of Turicibacter within the gut microbiota, increased fecal short chain fatty acids, and enriched phenolic metabolites such as phenyl-γ-valerolactones in the cecum. However, these putatively beneficial effects were reduced in PAC-fed mice infected with T. muris, suggesting concomitant parasite infection can attenuate gut microbial-mediated PAC catabolism. Collectively, our results suggest an inter-relationship between a phytonutrient and infection, whereby PAC may augment parasite-induced inflammation (most prominently with the cecum dwelling T. muris), and infection may abrogate the beneficial effects of health-promoting phytochemicals.


Subject(s)
Gastrointestinal Microbiome , Nematospiroides dubius , Polyphenols , Proanthocyanidins , Trichuriasis , Trichuris , Animals , Mice , Polyphenols/pharmacology , Polyphenols/metabolism , Trichuris/metabolism , Trichuriasis/parasitology , Trichuriasis/immunology , Nematospiroides dubius/immunology , Proanthocyanidins/metabolism , Proanthocyanidins/pharmacology , Mice, Inbred C57BL , Strongylida Infections/immunology , Strongylida Infections/parasitology , Strongylida Infections/metabolism , Female , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Feces/parasitology , Feces/microbiology
5.
Endocr Connect ; 13(7)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38842918

ABSTRACT

Aim: The alpha-glucosidase inhibitor acarbose is approved for the treatment of type 2 diabetes (T2D). It acts in the lumen of the gut by reducing intestinal hydrolysis and absorption of ingested carbohydrates. This reduces postprandial blood glucose concentration and increases the content of carbohydrates in the distal parts of the intestine potentially influencing gut microbiome (GM) composition and possibly impacting the gut microbiome (GM) dysbiosis associated with T2D. Here, we investigated the effect of acarbose on GM composition in patients with T2D. Methods: Faecal samples were collected in a previously conducted randomised, placebo-controlled, double-blind, crossover study in which 15 individuals with metformin-treated T2D (age 57-85 years, HbA1c 40-74 mmol/mol, BMI 23.6-34.6 kg/m2) were subjected to two 14-day treatment periods with acarbose and placebo, respectively, separated by a 6-week wash-out period. Faecal samples were collected before and by the end of each treatment period. The GM profiles were evaluated by 16S rRNA gene amplicon sequencing. Results: The GM profiles after the treatment periods with acarbose or placebo remained unaffected (P > 0.7) when compared with the GM profiles before treatment. This applied to the analysis of within-sample diversity (α-diversity) and between-sample bacterial composition diversity (ß-diversity). Additionally, no dominant bacterial species differentiated the treatment groups, and only minor increases in the relative abundances of Klebsiella spp. and Escherichia coli (P < 0.05) were observed after acarbose treatment. Conclusion: In patients with metformin-treated T2D, 14 days of treatment with acarbose showed only minor effects on GM as seen in increased relative abundances of Klebsiella spp. and Escherichia coli.

6.
Microorganisms ; 12(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38792720

ABSTRACT

Higher plants produce secondary metabolites expressing antimicrobial effects as a defense mechanism against opportunistic microorganisms living in close proximity with the plant. Fermentation leads to bioconversion of plant substrates to these bioactive compounds and their subsequent release via breakdown of plant cell walls. Fermented feed products have recently started to become implemented in the pig industry to reduce overall disease pressure and have been found to reduce events such as post-weaning diarrhea. In this study, we investigate the antimicrobial potential of fermented soybean- and rapeseed-based pig feed supplements with and without added seaweed. The antimicrobial effect was tested in a plate well diffusion assay against a range of known human and livestock pathogenic bacteria. Further, we investigate the metabolite profiles based on liquid-chromatography mass-spectrometry (LC-MS) analysis of the fermented products in comparison to their unfermented constituents. We observed a pronounced release of potential antimicrobial secondary metabolites such as benzoic acids when the plant material was fermented, and a significantly increased antimicrobial effect compared to the unfermented controls against several pathogenic bacteria, especially Salmonella enterica Typhimurium, Listeria monocytogenes, Yersinia enterocolitica, and a strain of atopic dermatitis causing Staphylococcus aureus CC1. In conclusion, fermentation significantly enhances the antimicrobial properties of rapeseed, soybean, and seaweed, offering a promising alternative to zinc oxide for controlling pathogens in piglet feed. This effect is attributed to the release of bioactive metabolites effective against pig production-relevant bacteria.

7.
Microorganisms ; 12(4)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38674741

ABSTRACT

Aging has been associated with a changed composition and function of the gut microbiota (GM). Here, we investigate the effects of the multi-strain probiotic HOWARU® Restore on GM composition and function in seniors. Ninety-eight healthy adult volunteers aged ≥75 years were enrolled in a randomised, double-blinded intervention (NCT02207140), where they received HOWARU Restore (1010 CFU) or the placebo daily for 24 weeks, with 45 volunteers from each group completing the intervention. Questionnaires monitoring the effects on gastro-intestinal discomfort and bowel movements were collected. Faecal samples for GM characterisation (qPCR, 16S rRNA gene amplicon sequencing) and metabolomics (GC-FID, 1H NMR) were collected at the baseline and after 24 weeks. In the probiotic group, self-reported gastro-intestinal discomfort in the form of flatulence was significantly decreased during the intervention. At the baseline, 151 'core species' (present in ≥95% of samples) were identified. Most core species belonged to the Lachnospiraceae and Ruminococcaceae families. Neither alpha diversity nor beta diversity or faecal metabolites was affected by probiotic intake. On the contrary, we observed high intra-individual GM stability, with 'individual' accounting for 72-75% of variation. In conclusion, 24 weeks of HOWARU Restore intake reduced gastro-intestinal discomfort in the form of flatulence in healthy seniors without significantly influencing GM composition or activity.

8.
Nutrients ; 16(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38613107

ABSTRACT

BACKGROUND: This secondary analysis of data from a randomized controlled trial (RCT) investigated how the maternal gut, breast milk, and infant gut microbiomes may contribute to the effects of a relaxation intervention, which reduced maternal stress and promoted infant weight gain. METHODS: An RCT was undertaken in healthy Chinese primiparous mother-infant pairs (340/7-376/7gestation weeks). Mothers were randomly allocated to either the intervention group (IG, listening to relaxation meditation) or the control group (CG). Outcomes were the differences in microbiome composition and the diversity in the maternal gut, breast milk, and infant gut at 1 (baseline) and 8 weeks (post-intervention) between IG and CG, assessed using 16S rRNA gene amplicon sequencing of fecal and breastmilk samples. RESULTS: In total, 38 mother-infant pairs were included in this analysis (IG = 19, CG = 19). The overall microbiome community structure in the maternal gut was significantly different between the IG and CG at 1 week, with the difference being more significant at 8 weeks (Bray-Curtis distance R2 = 0.04 vs. R2 = 0.13). Post-intervention, a significantly lower α-diversity was observed in IG breast milk (observed features: CG = 295 vs. IG = 255, p = 0.032); the Bifidobacterium genera presented a higher relative abundance. A significantly higher α-diversity was observed in IG infant gut (observed features: CG = 73 vs. IG = 113, p < 0.001). CONCLUSIONS: The findings were consistent with the hypothesis that the microbiome might mediate observed relaxation intervention effects via gut-brain axis and entero-mammary pathways; but confirmation is required.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Female , Infant , Humans , Milk, Human , Mothers , Breast
9.
PLoS One ; 19(3): e0298602, 2024.
Article in English | MEDLINE | ID: mdl-38427692

ABSTRACT

The objectives were 1) to characterize a Göttingen Minipig model of metabolic syndrome regarding its colon microbiota and circulating microbial products, and 2) to assess whether ovariectomized female and castrated male minipigs show similar phenotypes. Twenty-four nine-week-old Göttingen Minipigs were allocated to four groups based on sex and diet: ovariectomized females and castrated males fed either chow or high-fat diet (HFD) for 12 weeks. At study end, body composition and plasma biomarkers were measured, and a mixed meal tolerance test (MMT) and an intravenous glucose tolerance test (IVGTT) were performed. The HFD groups had significantly higher weight gain, fat percentage, fasting plasma insulin and glucagon compared to the chow groups. Homeostatic model assessment of insulin resistance index (HOMA-IR) was increased and glucose effectiveness derived from the IVGTT and Matsuda´s insulin sensitivity index from the MMT were decreased in the HFD groups. The HFD groups displayed dyslipidemia, with significantly increased total-, LDL- and HDL-cholesterol, and decreased HDL/non-HDL cholesterol ratio. The colon microbiota of HFD minipigs clearly differed from the lean controls (GuniFrac distance matrix). The main bacteria families driving this separation were Clostridiaceae, Fibrobacteraceae, Flavobacteriaceae and Porphyromonadaceae. Moreover, the species richness was significantly decreased by HFD. In addition, HFD decreased the circulating level of short chain fatty acids and beneficial microbial metabolites hippuric acid, xanthine and trigonelline, while increasing the level of branched chain amino acids. Six and nine metabolically relevant genes were differentially expressed between chow-fed and HFD-fed animals in liver and omental adipose tissue, respectively. The HFD-fed pigs presented with metabolic syndrome, gut microbial dysbiosis and a marked decrease in healthy gut microbial products and thus displayed marked parallels to human obesity and insulin resistance. HFD-fed Göttingen Minipig therefore represents a relevant animal model for studying host-microbiota interactions. No significant differences between the castrated and ovariectomized minipigs were observed.


Subject(s)
Gastrointestinal Microbiome , Insulin Resistance , Metabolic Syndrome , Swine , Animals , Male , Female , Humans , Mice , Swine, Miniature , Diet, High-Fat/adverse effects , Metabolic Syndrome/metabolism , Dysbiosis/metabolism , Cholesterol , Mice, Inbred C57BL
10.
BMC Microbiol ; 24(1): 83, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468200

ABSTRACT

BACKGROUND: The interplay between gut microbiota (GM) and the metabolization of dietary components leading to the production of short-chain fatty acids (SCFAs) is affected by a range of factors including colonic pH and carbohydrate source. However, there is still only limited knowledge on how the GM activity and metabolite production in the gastrointestinal tract could be influenced by pH and the pH gradient increases along the colon. RESULTS: Here we investigate the effect of pH gradients corresponding to levels typically found in the colon on GM composition and metabolite production using substrates inulin, lactose, galactooligosaccharides (GOS), and fructooligosaccharide (FOS) in an in vitro colon setup. We investigated 3 different pH regimes (low, 5.2 increasing to 6.4; medium, 5.6 increasing to 6.8 and high, 6.0 increasing to 7.2) for each fecal inoculum and found that colonic pH gradients significantly influenced in vitro simulated GM structure, but the influence of fecal donor and substrate was more pronounced. Low pH regimes strongly influenced GM with the decreased relative abundance of Bacteroides spp. and increased Bifidobacterium spp. Higher in vitro simulated colonic pH promoted the production of SCFAs in a donor- and substrate-dependent manner. The butyrate producer Butyricimonas was enriched at higher pH conditions, where also butyrate production was increased for inulin. The relative abundance of Phascolarctobacterium, Bacteroides, and Rikenellaceae also increased at higher colonic pH, which was accompanied by increased production of propionate with GOS and FOS as substrates. CONCLUSIONS: Together, our results show that colonic substrates such as dietary fibres influence GM composition and metabolite production, not only by being selectively utilized by specific microbes, but also because of their SCFA production, which in turn also influences colonic pH and overall GM composition and activity. Our work provides details about the effect of the gradients of rising pH from the proximal to distal colon on fermenting dietary substrates in vitro and highlights the importance of considering pH in GM research.


Subject(s)
Inulin , Prebiotics , Prebiotics/analysis , Inulin/metabolism , Proton-Motive Force , Fermentation , Fatty Acids, Volatile/metabolism , Butyrates/metabolism , Feces/microbiology , Bacteroidetes
11.
Sci Rep ; 14(1): 4730, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38413615

ABSTRACT

A synbiotic is a combination of live microorganisms and specific substrates that are selectively utilized by host microorganisms, resulting in health benefits for the host. Previous studies have demonstrated the protective effects of L. reuteri KUB-AC5 against Salmonella infection in chicken and mouse models. The probiotic activity of L. reuteri KUB-AC5 in these hosts was influenced by nutritional supplements. Water-based plants contain significant amounts of carbohydrates, particularly dietary fiber and proteins, making them potential prebiotic substrates. In this study, four water-based plants (Ulva rigida, Caulerpa lentillifera, Wolffia globosa, and Gracillaria fisheri) were screened for their ability to support the growth of L. reuteri KUB-AC5. Under monoculture testing, U. rigida exhibited the highest capacity to support the growth of L. reuteri KUB-AC5 and the production of organic acids, including acetic acid, lactic acid, and propionic acid (p ≤ 0.05). In co-culture experiments, the synbiotic combination of U. rigida and L. reuteri KUB-AC5 demonstrated the potential to eliminate Salmonella Typhimurium DMST 48437 when inoculated at 104 CFU/mL within 9 h. The synbiotic activities of U. rigida and L. reuteri KUB-AC5 were further investigated using an in vitro human gut model. Compared to the probiotic treatment, the synbiotic combination of L. reuteri KUB-AC5 and U. rigida showed significantly higher levels of L. reuteri KUB-AC5 (5.1 log copies/mL) and a reduction of S. Typhimurium by 0.8 log (CFU/ml) after 24 h (p ≤ 0.05). Synbiotic treatment also significantly promoted the production of short-chain fatty acids (SCFAs), including butyric acid, propionic acid, and acetic acid, compared to prebiotic and probiotic treatments alone (p ≤ 0.05). Furthermore, the synbiotic formulation modulated the in vitro simulated gut microbiome, enhancing putatively beneficial gut microbes, including lactobacilli, Faecalibacterium, and Blautia. Our findings demonstrated that L. reuteri KUB-AC5, in combination with U. rigida, exhibited synergistic activity, as indicated by increased viability, higher anti-pathogenicity toward Salmonella, and the ability to modulate the gut microbiome.


Subject(s)
Caulerpa , Edible Seaweeds , Limosilactobacillus reuteri , Probiotics , Synbiotics , Ulva , Animals , Mice , Humans , Propionates , Probiotics/pharmacology , Salmonella typhimurium , Acetates
12.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38366192

ABSTRACT

CRISPR-Cas systems are defense mechanisms against phages and other nucleic acids that invade bacteria and archaea. In Escherichia coli, it is generally accepted that CRISPR-Cas systems are inactive in laboratory conditions due to a transcriptional repressor. In natural isolates, it has been shown that CRISPR arrays remain stable over the years and that most spacer targets (protospacers) remain unknown. Here, we re-examine CRISPR arrays in natural E. coli isolates and investigate viral and bacterial genomes for spacer targets using a bioinformatics approach coupled to a unique biological dataset. We first sequenced the CRISPR1 array of 1769 E. coli isolates from the fecal samples of 639 children obtained during their first year of life. We built a network with edges between isolates that reflect the number of shared spacers. The isolates grouped into 34 modules. A search for matching spacers in bacterial genomes showed that E. coli spacers almost exclusively target prophages. While we found instances of self-targeting spacers, those involving a prophage and a spacer within the same bacterial genome were rare. The extensive search for matching spacers also expanded the library of known E. coli protospacers to 60%. Altogether, these results favor the concept that E. coli's CRISPR-Cas is an antiprophage system and highlight the importance of reconsidering the criteria use to deem CRISPR-Cas systems active.


Subject(s)
Bacteriophages , Prophages , Child , Humans , Prophages/genetics , Escherichia coli/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Bacteriophages/genetics , Genome, Bacterial , CRISPR-Cas Systems
13.
Am J Clin Nutr ; 119(1): 18-28, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37898434

ABSTRACT

BACKGROUND: Wholegrain intake is associated with lower risk of cardiometabolic diseases in adults, potentially via changes in the gut microbiota. Although cardiometabolic prevention should start early, we lack evidence on the effects in children. OBJECTIVES: This study investigated the effects of wholegrain oats and rye intake on serum low-density lipoprotein (LDL) cholesterol and plasma insulin (coprimary outcomes), other cardiometabolic markers, body composition, gut microbiota composition and metabolites, and gastrointestinal symptoms in children with high body mass index (BMI). METHODS: In a randomized crossover trial, 55 healthy Danish 8- to 13-y-olds received wholegrain oats and rye ("WG") or refined grain ("RG") products ad libitum for 8 wk in random order. At 0, 8, and 16 wk, we measured anthropometry, body composition by dual-energy absorptiometry, and blood pressure. Fasting blood and fecal samples were collected for analysis of blood lipids, glucose homeostasis markers, gut microbiota, and short-chain fatty acids. Gut symptoms and stool characteristics were determined by questionnaires. Diet was assessed by 4-d dietary records and compliance by plasma alkylresorcinols (ARs). RESULTS: Fifty-two children (95%) with a BMI z-score of 1.5 ± 0.6 (mean ± standard deviation) completed the study. They consumed 108 ± 38 and 3 ± 2 g/d wholegrain in the WG and RG period, which was verified by a profound difference in ARs (P < 0.001). Compared with RG, WG reduced LDL cholesterol by 0.14 (95% confidence interval: -0.24, -0.04) mmol/L (P = 0.009) and reduced total:high-density lipoprotein cholesterol (P < 0.001) and triacylglycerol (P = 0.048) without altering body composition or other cardiometabolic markers. WG also modulated the abundance of specific bacterial taxa, increased plasma acetate, propionate, and butyrate and fecal butyrate and reduced fatigue with no other effects on gut symptoms. CONCLUSION: High intake of wholegrain oats and rye reduced LDL cholesterol and triacylglycerol, modulated bacterial taxa, and increased beneficial metabolites in children. This supports recommendations of exchanging refined grain with wholegrain oats and rye among children. This trial was registered at clinicaltrials.gov as NCT04430465.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Child , Humans , Biomarkers , Butyrates , Cardiovascular Diseases/prevention & control , Cholesterol , Cholesterol, LDL , Cross-Over Studies , Edible Grain , Triglycerides , Adolescent
14.
Annu Rev Food Sci Technol ; 15(1): 189-210, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38109492

ABSTRACT

The current animal-based production of protein-rich foods is unsustainable, especially in light of continued population growth. New alternative proteinaceous foods are therefore required. Solid-state fermented plant foods from Africa and Asia include several mold- and Bacillus-fermented foods such as tempeh, sufu, and natto. These fermentations improve the protein digestibility of the plant food materials while also creating unique textures, flavors, and taste sensations. Understanding the nature of these transformations is of crucial interest to inspire the development of new plant-protein foods. In this review, we describe the conversions taking place in the plant food matrix as a result of these solid-state fermentations. We also summarize how these (nonlactic) plant food fermentations can lead to desirable flavor properties, such as kokumi and umami sensations, and improve the protein quality by removing antinutritional factors and producing additional essential amino acids in these foods.


Subject(s)
Fermentation , Fermented Foods , Plant Proteins , Taste , Humans , Dietary Proteins/metabolism
15.
Nat Med ; 30(1): 138-148, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38102298

ABSTRACT

Bacteriophage (also known as phage) communities that inhabit the gut have a major effect on the structure and functioning of bacterial populations, but their roles and association with health and disease in early life remain unknown. Here, we analyze the gut virome of 647 children aged 1 year from the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) mother-child cohort, all deeply phenotyped from birth and with longitudinally assessed asthma diagnoses. Specific temperate gut phage taxa were found to be associated with later development of asthma. In particular, the joint abundances of 19 caudoviral families were found to significantly contribute to this association. Combining the asthma-associated virome and bacteriome signatures had additive effects on asthma risk, implying an independent virome-asthma association. Moreover, the virome-associated asthma risk was modulated by the host TLR9 rs187084 gene variant, suggesting a direct interaction between phages and the host immune system. Further studies will elucidate whether phages, alongside bacteria and host genetics, can be used as preclinical biomarkers for asthma.


Subject(s)
Asthma , Bacteriophages , Infant , Humans , Child, Preschool , Virome , Prospective Studies , Bacteriophages/genetics , Asthma/epidemiology , Asthma/genetics , Bacteria/genetics
16.
Sci Rep ; 13(1): 21931, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38081984

ABSTRACT

Brown seaweeds have a rich bioactive content known to modulate biological processes, including the mucosal immune response and microbiota function, and may therefore have the potential to control enteric pathogens. Here, we tested if dietary seaweed (Saccharina latissima) supplementation could modulate pig gut health with a specific focus on parasitic helminth burdens, gut microbiota composition, and host immune response during a five week feeding period in pigs co-infected with the helminths Ascaris suum and Oesophagostomum dentatum. We found that inclusion of fermented S. latissima (Fer-SL) at 8% of the diet increased gut microbiota α-diversity with higher relative abundances of Firmicutes, Tenericutes, Verrucomicrobia, Spirochaetes and Elusimicrobia, and lower abundance of Prevotella copri. In the absence of helminth infection, transcription of immune-related genes in the intestine was only moderately influenced by dietary seaweed. However, Fer-SL modulated the transcriptional response to infection in a site-specific manner in the gut, with an attenuation of infection-induced gene expression in the jejunum and an amplification of gene expression in the colon. Effects on systemic immune parameters (e.g. blood lymphocyte populations) were limited, indicating the effects of Fer-SL were mainly localized to the intestinal tissues. Despite previously documented in vitro anti-parasitic activity against pig helminths, Fer-SL inclusion did not significantly affect parasite egg excretion or worm establishment. Collectively, our results show that although Fer-SL inclusion did not reduce parasite burdens, it may modify the gut environment during enteric parasite infection, which encourages continued investigations into the use of seaweeds or related products as novel tools to improve gut health.


Subject(s)
Gastrointestinal Microbiome , Animals , Swine , Diet , Oesophagostomum , Dietary Supplements , Immunity
17.
Gut Microbes ; 15(2): 2271151, 2023 12.
Article in English | MEDLINE | ID: mdl-37889696

ABSTRACT

Delivery by cesarean section (CS) is associated with an altered gut microbiota (GM) colonization and a higher risk of later chronic inflammatory diseases. Studies investigating the association between CS and atopic dermatitis (AD) are contradictive and often biased by confounding factors. The aim of this study was therefore to provide experimental evidence for the association between CS and AD in a mouse model and clarify the role of the GM changes associated with CS. It was hypothesized that CS-delivered mice, and human CS-GM transplanted mice develop severe dermatitis due to early dysbiosis. BALB/c mice delivered by CS or vaginally (VD) as well as BALB/c mice transplanted with GM from CS or VD human donors were challenged with oxazolone on the ear. The severity of dermatitis was evaluated by ear thickness and clinical and histopathological assessment which were similar between all groups. The immune response was assessed by serum IgE concentration, local cytokine response, and presence of immune cells in the draining lymph node. Both CS-delivered mice and mice inoculated with human CS-GM had a higher IgE concentration. A higher proportion of Th2 cells were also found in the CS-GM inoculated mice, but no differences were seen in the cytokine levels in the affected ears. In support of the experimental findings, a human cohort analysis from where the GM samples were obtained found that delivery mode did not affect the children's risk of developing AD. In conclusion, CS-GM enhanced a Th2 biased immune response, but had no effect on oxazolone-induced dermatitis in mice.


Subject(s)
Dermatitis, Atopic , Gastrointestinal Microbiome , Child , Mice , Humans , Animals , Female , Pregnancy , Oxazolone/toxicity , Cesarean Section/adverse effects , Dysbiosis , Dermatitis, Atopic/chemically induced , Cytokines , Immunoglobulin E , Mice, Inbred BALB C
18.
PLoS One ; 18(10): e0291441, 2023.
Article in English | MEDLINE | ID: mdl-37796923

ABSTRACT

In adults there are indications that regular eating patterns are related to better sleep quality. During early development, sleep and eating habits experience major maturational transitions. Further, the bacterial landscape of the gut microbiota undergoes a rapid increase in complexity. Yet little is known about the association between sleep, eating patterns and the gut microbiota. We first hypothesized that higher eating regularity is associated with more mature sleep patterns, and second, that this association is mediated by the maturational status of the gut microbiota. To test this hypothesis, we performed a longitudinal study in 162 infants to assess actigraphy, diaries of sleep and eating times, and stool microbiota composition at ages 3, 6 and 12 months. To comprehensively capture infants' habitual sleep-wake patterns, 5 sleep composites that characterize infants' sleep habits across multiple days in their home environment were computed. To assess timing of eating habits, we developed an Eating Regularity Index (ERI). Gut microbial composition was assessed by 16S rRNA gene amplicon sequencing, and its maturation was assessed based on alpha diversity, bacterial maturation index, and enterotype. First, our results demonstrate that increased eating regularity (higher ERI) in infants is associated with less time spent awake during the night (sleep fragmentation) and more regular sleep patterns. Second, the associations of ERI with sleep evolve with age. Third, the link between infant sleep and ERI remains significant when controlling for parents' subjectively rated importance of structuring their infant's eating and sleeping times. Finally, the gut microbial maturational markers did not account for the link between infant's sleep patterns and ERI. Thus, infants who eat more regularly have more mature sleep patterns, which is independent of the maturational status of their gut microbiota. Interventions targeting infant eating rhythm thus constitute a simple, ready-to-use anchor to improve sleep quality.


Subject(s)
Parents , Sleep , Adult , Humans , Infant , Longitudinal Studies , RNA, Ribosomal, 16S/genetics , Sleep Deprivation
19.
Viruses ; 15(10)2023 10 05.
Article in English | MEDLINE | ID: mdl-37896828

ABSTRACT

Studies into the viral fraction of complex microbial communities, like in the mammalian gut, have recently garnered much interest. Yet there is still no standardized protocol for extracting viruses from such samples, and the protocols that exist employ procedures that skew the viral community of the sample one way or another. The first step of the extraction pipeline often consists of the basic filtering of macromolecules and bacteria, yet even this affects the viruses in a strain-specific manner. In this study, we investigate a protocol for viral extraction based on ultrafiltration and how the choice of ultrafilter might influence the extracted viral community. Clinical samples (feces, vaginal swabs, and tracheal suction samples) were spiked with a mock community of known phages (T4, c2, Φ6, Φ29, Φx174, and Φ2972), filtered, and quantified using spot and plaque assays to estimate the loss in recovery. The enveloped Φ6 phage is especially severely affected by the choice of filter, but also tailed phages such as T4 and c2 have a reduced infectivity after ultrafiltration. We conclude that the pore size of ultrafilters may affect the recovery of phages in a strain- and sample-dependent manner, suggesting the need for greater thought when selecting filters for virus extraction.


Subject(s)
Bacteriophages , Caudovirales , Microbiota , Viruses , Animals , Bacteriophage phi X 174 , Mammals
20.
Microbiome ; 11(1): 193, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37635262

ABSTRACT

BACKGROUND: There is an increasing interest in investigating the human gut virome for its influence on the gut bacterial community and its putative influence on the trajectory towards health or disease. Most gut virome studies are based on sequencing of stored fecal samples. However, relatively little is known about how conventional storage buffers and storage conditions affect the infectivity of bacteriophages and influence the downstream metavirome sequencing. RESULTS: We demonstrate that the infectivity and genome recovery rate of different spiked bacteriophages (T4, c2 and Phi X174) are variable and highly dependent on storage buffers. Regardless of the storage temperature and timespan, all tested phages immediately lost 100% (DNA/RNA Shield) or more than 90% (StayRNA and RNAlater) of their infectivity. Generally, in SM buffer at 4 °C phage infectivity was preserved for up to 30 days and phage DNA integrity was maintained for up to 100 days. While in CANVAX, the most effective buffer, all spiked phage genomes were preserved for at least 100 days. Prolonged storage time (500 days) at - 80 °C impacted viral diversity differently in the different buffers. Samples stored in CANVAX or DNA/RNA Shield buffer had the least shifts in metavirome composition, after prolonged storage, but they yielded more contigs classified as "uncharacterised". Moreover, in contrast to the SM buffer, these storage buffers yielded a higher fraction of bacterial DNA in metavirome-sequencing libraries. We demonstrated that the latter was due to inactivation of the DNases employed to remove extra-cellular DNA during virome extraction. The latter could be partly avoided by employing additional washing steps prior to virome extraction. CONCLUSION: Fecal sample storage buffers and storage conditions (time and temperature) strongly influence bacteriophage infectivity and viral composition as determined by plaque assay and metavirome sequencing. The choice of buffer had a larger effect than storage temperature and storage time on the quality of the viral sequences and analyses. Based on these results, we recommend storage of fecal virome samples at in SM buffer at 4 °C for the isolation of viruses and at - 80 °C for metagenomic applications if practically feasible (i.e., access to cold storage). For fecal samples stored in other buffers, samples should be cleared of these buffers before viral extraction and sequencing. Video Abstract.


Subject(s)
Bacteriophages , Humans , Bacteriophages/genetics , DNA, Bacterial , Feces , Metagenome , RNA
SELECTION OF CITATIONS
SEARCH DETAIL