Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Thromb Res ; 202: 108-118, 2021 06.
Article in English | MEDLINE | ID: mdl-33819778

ABSTRACT

BACKGROUND: Multiple myeloma (MM) and its precursor condition, monoclonal gammopathy of undetermined significance (MGUS) have an increased risk of thrombotic events, especially during anti-myeloma treatment. Many different underlying causes for this hypercoagulability have been suggested, but current techniques to identify abnormalities in these patients are sparse and inefficient. The aim of this study was to assess the hypercoagulability in MGUS and MM patients through various coagulation analyses and identify changes in the MM patients throughout their treatment regimen. MATERIALS AND METHODS: Platelet-free plasma from 38 MM patients, 19 MGUS patients and 34 healthy controls were tested for hypercoagulability using calibrated automated thrombogram, a procoagulant phospholipid assay, a microvesicle-associated (MV) tissue factor (TF) assay, and a cell-free deoxyribonucleic acid (cf-DNA) assay as a surrogate measurement for neutrophil extracellular traps (NETs). RESULTS: MGUS and MM patients both had elevated thrombin generation and procoagulant phospholipid activity in comparison to the control subjects. MM, and partly MGUS, showed increased MV-TF activity, however, only MM had increased levels of the cf-DNA. CONCLUSIONS: Here we demonstrated that hypercoagulability was present in patients with MGUS and MM through increased thrombin generation, possibly due to higher TF and procoagulant phospholipids (PPL) activity. This may be associated to MVs and, for MM patients, be attributed to procoagulant NETs activity; however, this remains to be determined.


Subject(s)
Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Blood Coagulation , Humans , Monoclonal Gammopathy of Undetermined Significance/complications , Multiple Myeloma/complications , Thrombin , Thromboplastin
2.
PLoS One ; 14(1): e0210835, 2019.
Article in English | MEDLINE | ID: mdl-30640949

ABSTRACT

Multiple myeloma (MM) patients have increased risk of developing venous thromboembolism, but the underlying mechanisms and the effect on the coagulation system of the disease and the current cancer therapies are not known. It is possible that cancer-associated extracellular vesicles (EV), carrying tissue factor (TF) and procoagulant phospholipids (PPL) may play a role in thrombogenesis. The aim of this study was to perform an in-depth analysis of procoagulant activity of small and large EVs isolated from 20 MM patients at diagnosis and after receiving first-line treatment compared with 20 healthy control subjects. Differential ultracentrifugation at 20,000 × g and 100,000 × g were used to isolate EVs for quantitative and phenotypical analysis through nanoparticle tracking analysis, Western blotting and transmission electron microscopy. The isolated EVs were analyzed for procoagulant activity using the calibrated automated thrombogram technique, a factor Xa-based activity assay, and the STA Procoag-PPL assay. In general, MM patients contained more EVs, and immunoelectron microscopy confirmed the presence of CD9- and CD38-positive EVs. EVs in the 20,000 × g pellets from MM patients exerted procoagulant activity visualized by increased thrombin generation and both TF and PPL activity. This effect diminished during treatment, with the most prominent effect observed in the high-dose chemotherapy eligible patients after induction therapy with bortezomib, cyclophosphamide, and dexamethasone. In conclusion, the EVs in patients with MM carrying TF and PPL are thus capable of exerting procoagulant activity.


Subject(s)
Extracellular Vesicles/metabolism , Multiple Myeloma/blood , Thromboplastin/metabolism , Adult , Aged , Aged, 80 and over , Blood Coagulation , Case-Control Studies , Extracellular Vesicles/ultrastructure , Female , Humans , Male , Middle Aged , Multiple Myeloma/complications , Multiple Myeloma/drug therapy , Phospholipids/blood , Venous Thromboembolism/blood , Venous Thromboembolism/etiology
3.
J Extracell Vesicles ; 7(1): 1454777, 2018.
Article in English | MEDLINE | ID: mdl-29696077

ABSTRACT

Tissue factor (TF) is the main initiator of coagulation and procoagulant phospholipids (PPL) are key components in promoting coagulation activity in blood. Both TF and PPL may be presented on the surface of extracellular vesicles (EVs), thus contributing to their procoagulant activity. These EVs may constitute a substantial part of pathological hypercoagulability that is responsible for triggering a higher risk of thrombosis in certain patients. The aim of this study was to describe a model system for the isolation of EVs required for investigating their effect on coagulation. Differential ultracentrifugation (DUC) with and without a single washing step was used to isolate and evaluate the procoagulant capacity of EVs from healthy volunteers through analysis of thrombin generation and PPL activity. Ultracentrifugation at 20,000 × g and 100,000 × g resulted in pellets containing larger vesicles and smaller vesicles, respectively. Isolation yield of particle concentration was assessed by nanoparticle tracking analysis. Immunoelectron microscopy and western blotting revealed vesicles positive for the commonly used EV-marker CD9. Plasma proteins and lipoproteins were co-isolated with the EVs; however, application of a washing step clearly diminished the amount of contaminants. The isolated EVs were capable of enhancing thrombin generation, mainly due to PPL predominantly present in pellets from 20,000 × g centrifugation, and correlated with the activity measured by a PPL activity assay. Thus, DUC was proficient for the isolation of EVs with minimal contamination from plasma proteins and lipoproteins, and the setup can be used to study EV-associated procoagulant activity. This may be useful in determining the procoagulant activity of EVs in patients at potentially increased risk of developing thrombosis, e.g. cancer patients. Abbreviations: TF: Tissue factor; PL: Phospholipids; EVs: Extracellular vesicles; FXa: Activated coagulation factor X; TGA: Thrombin generation assay; PPL: Procoagulant phospholipids; DUC: Differential ultracentrifugation; NTA: Nanoparticle tracking analysis; TEM: Transmission electron microscopy; SPP: Standard pool plasma; CTI: Corn trypsin inhibitor; 20K: 20,000 × g; 100K: 100,000 × g; FVIII: Coagulation factor VIII.

4.
Biochem Biophys Res Commun ; 450(2): 1083-8, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24996178

ABSTRACT

Although adult muscle tissue possesses an exceptional capacity for regeneration, in the case of large defects, the restoration to original state is not possible. A well-known source for the de novo regeneration is the adipose-derived stem cells (ASCs), which can be readily isolated and have been shown to have a broad differentiation and regenerative potential. In this work, we employed uniaxial cyclic tensile strain (CTS), to mechanically stimulate human ASCs to participate in the formation skeletal myotubes in an in vitro model of myogenesis. The application of CTS for 48h resulted in the formation of a highly ordered array of parallel ASCs, but failed to support skeletal muscle terminal differentiation. When the same stimulation paradigm was applied to cocultures with mouse skeletal muscle myoblasts, the percentage of ASCs contributing to the formation of myotubes significantly exceeded the levels reported in the literature hitherto. In perspective, the mechanical strain may be used to increase the efficiency of incorporation of ASCs in the skeletal muscles, which could be found useful in diverse traumatic or pathologic scenarios.


Subject(s)
Adipose Tissue/cytology , Cell Fusion , Mesenchymal Stem Cells/physiology , Muscle Fibers, Skeletal/physiology , Animals , Cell Differentiation , Cell Line , Coculture Techniques , Humans , Mesenchymal Stem Cells/cytology , Mice , Muscle Fibers, Skeletal/cytology , Muscle Fibers, Skeletal/ultrastructure , Myoblasts/cytology , Myoblasts/physiology , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...