Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38245836

ABSTRACT

This study investigated the impact of an enterotoxigenic Escherichia coli (ETEC) F18 challenge on newly weaned pigs when fed one of three Zn levels (150, 1,400, or 2,500 ppm) on performance, Zn status, ETEC shedding, and diarrhea. The ETEC challenge was hypothesized to have a more pronounced negative impact on pigs fed a diet containing 150 ppm Zn compared to 1,400 or 2,500 ppm Zn for 14 d after weaning. The study included 72 ETEC F18 susceptible pigs weaned at ~28 d of age (d 0 of the study). The pigs were distributed according to initial weight and litter to one of the three dietary Zn levels. Half of the pigs were challenged with ETEC on d 1 and 2. The challenge reduced (P ≤ 0.03) feed intake and average daily gain (ADG) during d 3 to 5. Challenged pigs fed 150 ppm Zn had lower (P = 0.01) ADG during d 5 to 7 compared to those fed 1,400 or 2,500 ppm Zn, whereas control pigs' ADG were not affected by dietary Zn content. Challenged pigs fed 150 ppm Zn also showed lower (P < 0.01) fecal dry matter (DM) on d 5 compared to control pigs fed 150 ppm Zn and challenged pigs fed 1,400 or 2,500 ppm Zn. Challenge increased (P < 0.01) ETEC shedding in all groups, but challenged pigs fed 150 ppm Zn showed higher (P ≤ 0.05) fecal shedding of ETEC and toxins than when fed 1,400 or 2,500 ppm. On d 3, C-reactive protein concentration in plasma was lower (P < 0.03) for pigs fed 1,400 and 2,500 compared to 150 ppm Zn. Plasma haptoglobin and pig major acute phase protein were unaffected by dietary Zn content. On d 0, the serum Zn concentration was 586 ±â€…36.6 µg/L, which pigs fed 150 ppm Zn maintained throughout the study. The serum Zn concentration increased (P ≤ 0.07) in pigs fed 1,400 or 2,500 ppm Zn. The challenge decreased (P < 0.01) the serum Zn concentration in pigs fed 2,500 ppm Zn. On d 5 and 7, serum Zn concentration was similar for challenged pigs fed 1,400 and 2,500 ppm Zn, while control pigs fed 2,500 ppm Zn had higher (P < 0.01) serum Zn concentration than 1,400 ppm Zn. On d 7, serum Zn concentration tended (P = 0.08) to be lower for pigs with diarrhea (fecal DM ≤ 18%). In summary, these results indicate that newly weaned pigs fed 150 ppm Zn are more susceptible to ETEC F18 colonization and its adverse consequences such as diarrhea and reduced growth, even though challenge did not increase acute phase proteins.


At weaning, the immune system of pigs is not fully developed, leaving them more susceptible to infections such as enterotoxigenic Escherichia coli (ETEC) F18. This study investigated the effect of dietary zinc content on newly weaned pigs infected with ETEC in terms of performance, serum zinc status, diarrhea, E. coli shedding, and systemic inflammation markers. Challenged pigs had reduced growth the first 3 d after the challenge when fed 150 ppm dietary Zn compared to non-challenged pigs. Moreover, the challenge increased E. coli fecal shedding and resulted in more liquid feces, and a greater risk of diarrhea in pigs fed 150 ppm zinc compared to 1,400 and 2,500 ppm zinc. The challenge was not able to induce a response in the acute phase proteins. The serum zinc concentration was lowest when feeding 150 ppm, and the ETEC challenge caused a reduction in the serum Zn concentration only when feeding 2,500 ppm zinc. These findings suggest that newly weaned pigs fed 150 ppm zinc are less capable of withstanding an ETEC challenge based on impaired growth performance and increased diarrhea and E. coli shedding.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Swine Diseases , Animals , Swine , Weaning , Escherichia coli Infections/veterinary , Zinc , Diet/veterinary , Diarrhea/veterinary , Animal Feed/analysis
2.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-37850960

ABSTRACT

The Zn requirement of pigs immediately after weaning is more investigated compared to the Zn requirement in the growth period between 10 and 30 kg. Unabsorbed and excessive dietary Zn is excreted mainly through feces, and spreading pig slurry to fields can cause environmental issues because high levels of Zn can impair plant growth and contribute to the development of antimicrobial resistance genes in microorganisms. Therefore, more precise knowledge of Zn requirements and dietary Zn recommendations is important. The present study investigated the optimal dietary Zn content for 10- to 30-kg pigs. The study used 150 pigs weaned at 28 d of age (day 0) and supplied with 1,474 mg dietary Zn/kg the first 2 wk post-weaning. After 2 wk, pigs were randomly distributed according to body weight (BW; 10.1 ±â€…0.3 kg) and sex, to individually housing, and fed a diet supplemented with either 0, 30, 60, 120, or 240 mg Zn/kg (from ZnO), resulting in total dietary Zn contents of 80, 92, 117, 189, and 318 mg/kg until week 6 post-weaning. BW, feed intake, and fecal scores were recorded, and samples of blood (weeks 2, 3, 5, and 6) and tissues (week 6) were collected. The feed intake, growth, feed efficiency, relative weight of the pancreas and liver, Zn concentration in the liver, and pancreatic digestive enzyme activity were unaffected by dietary Zn content (P > 0.12). The serum Zn level decreased (P < 0.01) by up to 24% from weeks 2 to 3. The serum Zn concentrations in weeks 5 and 6 were similar to in week 2 when 117, 189, and 318 mg Zn/kg were provided, while with 80 and 92 mg Zn/kg the serum Zn concentration was lower (P < 0.01) than in week 2. The serum Zn concentration reached a plateau in weeks 5 and 6, and breakpoints were calculated at 126 ±â€…17 and 102 ±â€…6 mg Zn/kg, respectively. Bone Zn status was greater (P < 0.01) with 189 than 80 mg Zn/kg and a breakpoint was calculated at 137 ±â€…19 mg Zn/kg. According to performance, the Zn requirement for 10- to 30-kg pigs can be fulfilled with 80 mg total Zn/kg, but based on serum and bone Zn status, the optimal total dietary Zn content is 102 to 137 mg/kg. The latter corresponds to a daily Zn intake (requirement) of 103 to 138 mg when calculated from the average feed intake during weeks 3 to 6 (1,005 g/d). Importantly, the presented results are obtained in pigs supplied with 1,474 mg Zn/kg from ZnO the first 2 wk post-weaning and a high level of phytase (1,000 phytase units) in the diet throughout the experiment.


It is important to ensure that the dietary zinc (Zn) content fulfills the Zn requirement of pigs. The unabsorbed proportion of dietary Zn is excreted mainly through feces and supplying pigs with more Zn than they need increases the excretion, which may be an environmental issue. This study investigated the optimal dietary Zn content in 10- to 30-kg pigs. From weaning until 10 kg (the first 2 wk post-weaning) pigs were fed a diet containing 1,474 mg Zn/kg. From the third to the sixth week post-weaning (10- to 30-kg) pigs were fed a basal diet supplemented with either 0, 30, 60, 120, or 240 mg Zn/kg from zinc oxide. Analysis of the five experimental diets showed total Zn contents of 80, 92, 117, 189, and 318 mg/kg. The feed intake, weight gain, and feed efficiency were unaffected by dietary Zn content. The Zn concentration in serum (blood) at the end of the experiment was lowest with 80 and 92 mg total Zn/kg compared to 117, 189, and 318 mg total Zn/kg, which resulted in similar serum Zn concentration. The Zn content in bone was lower at 80 compared to 189 mg total Zn/kg.


Subject(s)
6-Phytase , Zinc Oxide , Animals , Animal Feed/analysis , Body Weight , Diet/veterinary , Dietary Supplements , Swine , Zinc , Male , Female
3.
BMC Microbiol ; 23(1): 145, 2023 05 20.
Article in English | MEDLINE | ID: mdl-37210480

ABSTRACT

BACKGROUND: In the pig production, diarrhea can occur during different growth stages including the period 4-16 weeks post weaning, during which a diarrheal outbreak also termed as colitis-complex diarrhea (CCD) can occur and it is distinct from post-weaning diarrhea (1-2 weeks post weaning). We hypothesized that CCD in growing pigs is associated with changes in colonic microbiota composition and fermentation patterns, and the aim of the present observational study was to identify changes in digesta-associated bacteria (DAB) and mucus-associated bacteria (MAB) in the colon of growing pigs with and without diarrhea. A total number of 30 pigs (8, 11, and 12 weeks of age) were selected; 20 showed clinical signs of diarrhea and 10 appeared healthy. Based on histopathological examination of colonic tissues, 21 pigs were selected for further studies and classified as follows: without diarrhea, no colon inflammation (NoDiar; n = 5), with diarrhea, without colonic inflammation (DiarNoInfl; n = 4), and with diarrhea, with colonic inflammation (DiarInfl; n = 12). Composition (based on 16S rRNA gene amplicon sequencing) and fermentation pattern (short-chain fatty acids; SCFA profile) of the DAB and MAB communities were characterized. RESULTS: The DAB showed higher alpha diversity compared to MAB in all pigs, and both DAB and MAB showed lowest alpha diversity in the DiarNoInfl group. Beta diversity was significantly different between DAB and MAB as well as between diarrheal groups in both DAB and MAB. Compared to NoDiar, DiarInfl showed increased abundance of various taxa, incl. certain pathogens, in both digesta and mucus, as well as decreased digesta butyrate concentration. However, DiarNoInfl showed reduced abundance of different genera (mainly Firmicutes) compared to NoDiar, but still lower butyrate concentration. CONCLUSION: Diversity and composition of MAB and DAB changed in diarrheal groups depending on presence/absence of colonic inflammation. We also suggest that DiarNoInfl group was at the earlier stage of diarrhea compared with DiarInfl, with a link to dysbiosis of colonic bacterial composition as well as reduced butyrate concentration, which plays a pivotal role in gut health. This could have led to diarrhea with inflammation due to a dysbiosis, associated with an increase in e.g., Escherichia-Shigella (Proteobacteria), Helicobacter (Campylobacterota), and Bifidobacterium (Actinobacteriota), which may tolerate or utilize oxygen and cause epithelial hypoxia and inflammation. The increased consumption of oxygen in epithelial mucosal layer by infiltrated neutrophils may also have added up to this hypoxia. Overall, the results confirmed that changes in DAB and MAB were associated with CCD and reduced butyrate concentration in digesta. Moreover, DAB might suffice for future community-based studies of CCD.


Subject(s)
Dysbiosis , Gastrointestinal Microbiome , Swine , Animals , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/genetics , Bacteria/genetics , Diarrhea/veterinary , Inflammation , Butyrates
4.
Animals (Basel) ; 12(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36230326

ABSTRACT

In many countries, medical levels of zinc (typically as zinc oxide) are added to piglet diets in the first two weeks post-weaning to prevent the development of post-weaning diarrhoea (PWD). However, high levels of zinc constitute an environmental polluting agent, and may contribute to the development and/or maintenance of antimicrobial resistance (AMR) among bacteria. Consequently, the EU banned administering medical levels of zinc in pig diets as of June 2022. However, this may result in an increased use of antibiotic therapeutics to combat PWD and thereby an increased risk of further AMR development. The search for alternative measures against PWD with a minimum use of antibiotics and in the absence of medical levels of zinc has therefore been intensified over recent years, and feed-related measures, including feed ingredients, feed additives, and feeding strategies, are being intensively investigated. Furthermore, management strategies have been developed and are undoubtedly relevant; however, these will not be addressed in this review. Here, feed measures (and vaccines) are addressed, these being probiotics, prebiotics, synbiotics, postbiotics, proteobiotics, plants and plant extracts (in particular essential oils and tannins), macroalgae (particularly macroalgae-derived polysaccharides), dietary fibre, antimicrobial peptides, specific amino acids, dietary fatty acids, milk replacers, milk components, creep feed, vaccines, bacteriophages, and single-domain antibodies (nanobodies). The list covers measures with a rather long history and others that require significant development before their eventual use can be extended. To assess the potential of feed-related measures in combating PWD, the literature reviewed here has focused on studies reporting parameters of PWD (i.e., faeces score and/or faeces dry matter content during the first two weeks post-weaning). Although the impact on PWD (or related parameters) of the investigated measures may often be inconsistent, many studies do report positive effects. However, several studies have shown that control pigs do not suffer from diarrhoea, making it difficult to evaluate the biological and practical relevance of these improvements. From the reviewed literature, it is not possible to rank the efficacy of the various measures, and the efficacy most probably depends on a range of factors related to animal genetics and health status, additive doses used, composition of the feed, etc. We conclude that a combination of various measures is probably most recommendable in most situations. However, in this respect, it should be considered that combining strategies may lead to additive (e.g., synbiotics), synergistic (e.g., plant materials), or antagonistic (e.g., algae compounds) effects, requiring detailed knowledge on the modes of action in order to design effective strategies.

5.
Animals (Basel) ; 11(7)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34359279

ABSTRACT

Colitis-complex diarrhea (CCD) in pigs can be defined as a type of diarrhea, which is associated with colonic inflammation and disrupted colonic gut barrier functionality in growing pigs (4-16 weeks post-weaning). It is a challenge for the pig industry as it is associated with the high use of antibiotics, reduced animal welfare, and depressed growth rate. The exact etiology of CCD is still unclear; however, pathogens including Brachyspira (B.) hyodysenteriae, B. pilosicoli, and swine whipworms such as Trichuris (T.) suis have been involved in specific colitis (SC). In the absence of specific pathogens, dietary factors, such as high levels of protein, pelleted feedstuffs, and lack of sufficient antioxidants, can result in non-specific colitis (NSC). On the other hand, supplement of polyunsaturated fatty acids (PUFA) and polyphenols, sufficient supply of essential amino acids (e.g., threonine, cysteine, and proline), short-chain fatty acids (SCFA; especially butyrate), and resistant starch have shown to confer preventing/ameliorating effects on CCD. Different putative biomarkers associated with CCD have been presented. It is anticipated that a comprehensive picture of the possible causes of CCD and potential dietary interventions could cast light on the direction of future studies aimed at developing preventive and curative strategies against CCD in growing pigs.

6.
Animals (Basel) ; 11(6)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200892

ABSTRACT

The aim of the present study was to determine postprandial amino acid (AA) appearance in the blood of growing pigs as influenced by protein source. Seven growing pigs (average body weight 18 kg), in a 7 × 5 Youden square design, were fitted with a jugular vein catheter and fed seven diets containing wheat, soybean meal, enzyme-treated soybean meal, hydrothermally-treated rapeseed meal, casein, hydrolyzed casein, and a crystalline AA blend with the same AA profile as casein. The latter was not eaten by the pigs, therefore being excluded. Blood samples were collected at -30, 30, 60, 90, 120, 180, and 360 min after a meal and analyzed for free AA. Overall, plasma AA concentrations were highest 60 min after feeding. There were no differences in plasma AA concentration between casein and hydrolyzed casein, but soybean meal resulted in lower AA plasma concentrations compared with enzyme-treated soybean meal at 60 and 120 min after feeding. There were no differences between hydrothermally-treated rapeseed meal and soybean meal. In conclusion, the ingredients could not clearly be categorized as being slow or fast protein with regard to protein digestion and absorption of AA, but soybean meal resulted in a prolonged appearance of plasma AA compared to casein and hydrolyzed casein.

7.
Food Funct ; 11(1): 514-523, 2020 Jan 29.
Article in English | MEDLINE | ID: mdl-31833481

ABSTRACT

Mixed linkage (1→3),(1→4)-ß-d-glucan (BG) is a soluble fibre available from oat and barley grains that has been gaining interest due to its health-promoting role in cardiovascular diseases and its ability to modulate the glycaemic index which is beneficial for people with diabetes. This study investigates the effect of three purified barley BGs, with different molecular weight and block structure, on faecal bile acid excretion in hypercholesterolaemic rats. Wistar rats (48 male) were divided in four groups: Control group fed with the cellulose-rich diet (CON); Glucagel group fed with the commercial BG (GLU, 100 kDa), and rats fed with low molecular weight BG (LBG, 150 kDa) and medium molecular weight BG (MBG, 530 kDa). The bile acid profiles of rat faecal samples were measured using gas chromatography-mass spectrometry (GC-MS). A metabolite profiling approach led to the identification of 7 bile acids and 45 other compounds such as sterols, fatty acids and fatty alcohols. Subsequent application of ANOVA-simultaneous component analysis and Principal Component Analysis revealed that all three BG diets increased bile acid faecal excretion compared to the control group. The bile acid excretion was found to be different in all three BG diets and the MBG group showed a significantly higher level of faecal secondary bile acids, including deoxycholic acid, hyodeoxycholic acid, and lithocholic acid. We hypothesise that the hydrophobic surface of the secondary bile acids, which are known to cause colon cancer, has high affinity to the hydrophobic surfaces of cellulosic blocks of the BG. This in vivo study demonstrates that the molecular weight and/or block structures of BG modulate the excretion of secondary bile acids. This finding suggests that developing diets with designed BGs with an optimal molecular structure to trap carcinogenic bile acids can have a significant impact on counteracting cancer and other lifestyle associated diseases.


Subject(s)
Bile Acids and Salts/metabolism , Feces/chemistry , Hypercholesterolemia/drug therapy , beta-Glucans/administration & dosage , beta-Glucans/chemistry , Animals , Bile Acids and Salts/chemistry , Dietary Supplements/analysis , Hordeum/chemistry , Humans , Hypercholesterolemia/metabolism , Male , Rats , Rats, Wistar
8.
Nutrients ; 10(10)2018 Oct 13.
Article in English | MEDLINE | ID: mdl-30322146

ABSTRACT

A major challenge in affluent societies is the increase in disorders related to gut and metabolic health. Chronic over nutrition by unhealthy foods high in energy, fat, and sugar, and low in dietary fibre is a key environmental factor responsible for this development, which may cause local and systemic inflammation. A low intake of dietary fibre is a limiting factor for maintaining a viable and diverse microbiota and production of short-chain fatty acids in the gut. A suppressed production of butyrate is crucial, as this short-chain fatty acid (SCFA) can play a key role not only in colonic health and function but also at the systemic level. At both sites, the mode of action is through mediation of signalling pathways involving nuclear NF-κB and inhibition of histone deacetylase. The intake and composition of dietary fibre modulate production of butyrate in the large intestine. While butyrate production is easily adjustable it is more variable how it influences gut barrier function and inflammatory markers in the gut and periphery. The effect of butyrate seems generally to be more consistent and positive on inflammatory markers related to the gut than on inflammatory markers in the peripheral tissue. This discrepancy may be explained by differences in butyrate concentrations in the gut compared with the much lower concentration at more remote sites.


Subject(s)
Bacteria/metabolism , Butyrates/metabolism , Diet, Healthy , Dietary Fiber/administration & dosage , Gastrointestinal Microbiome , Inflammation/prevention & control , Intestinal Absorption , Intestines/microbiology , Animals , Dietary Fiber/metabolism , Humans , Inflammation/metabolism , Inflammation/microbiology , Inflammation Mediators/metabolism , Nutritive Value , Permeability , Recommended Dietary Allowances , Signal Transduction
9.
Foods ; 7(5)2018 May 18.
Article in English | MEDLINE | ID: mdl-29783633

ABSTRACT

Intake of butyrylated starches may increase colonic butyrate supply, which can be of public health and clinical benefit by maintaining colonic health. The objective was to investigate if an organocatalytic method with tartaric acid as a catalyst could be applied to produce butyrylated products from different starch sources and to characterize their chemical structure and fermentation capability by using solid-state 13C MAS NMR (magic angle spinning nuclear magnetic resonance) spectroscopy and an in vitro fermentation model, respectively. Low-amylose and high-amylose potato starch (LAPS and HAPS) and low-amylose and high-amylose maize starch (LAMS and HAMS) were subjected to organocatalytic butyrylation. This resulted in products with an increasing degree of substitution (DS) measured by heterogenous saponification and back titration with the HCl (chemical method) depending on reaction time. NMR analysis, however, showed that the major part of the acylation was induced by tartarate (75⁻89%) and only a minor part (11⁻25%) by butyrate. Generally, the chemical method overestimated the DS by 38% to 91% compared with the DS determination by NMR. Increasing the DS appeared to lower the in vitro fermentation capability of starches independent of the starch source and, therefore, do not seem to present a feasible method to deliver more butyrate to the colon than lower DS products.

10.
Int J Food Sci Nutr ; 68(7): 811-820, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28367709

ABSTRACT

The effects of carbohydrate (CHO) source and processing (extrusion cooking) on large intestinal fermentation products were studied in ileo-cannulated pigs as a model for humans. Pigs were fed diets containing barley, pea or a mixture of potato starch:wheat bran (PSWB) either raw or extrusion cooked. Extrusion cooking reduced the amount of starch fermented in the large intestine by 52-96% depending on the CHO source and the total pool of butyrate in the distal small intestine + large intestine by on average 60% across diets. Overall, extrusion cooking caused a shift in the composition of short-chain fatty acids (SCFA) produced towards more acetate and less propionate and butyrate. The CHO source and processing highly affected the fermentation characteristics and extrusion cooking generally reduced large intestinal fermentation and resulted in a less desirable composition of the fermentation products. The latter outcome is non-conducive to a healthy large intestinal environment and its resulting metabolic health.


Subject(s)
Carbohydrates/chemistry , Edible Grain/chemistry , Food Handling , Hot Temperature , Intestine, Large/microbiology , Swine/physiology , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Diet/veterinary , Intestine, Large/metabolism , Male , Solanum tuberosum/chemistry , Swine/microbiology
11.
J Agric Food Chem ; 63(48): 10418-30, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26566722

ABSTRACT

This study compared the effects of a resistant starch (RS)-rich, arabinoxylan (AX)-rich, or low-DF Western-style control diet (all high-fat) on large intestinal gene expression, adiposity, and glycemic response parameters in pigs. Animals were slaughtered after 3 weeks of treatment. Plasma butyrate concentration was higher following the high-DF diets, whereas plasma glucose, insulin, and insulin resistance increased after 3 weeks irrespective of diet. The mRNA abundance in the large intestine of genes involved in nutrient transport, immune response, and intestinal permeability was affected by segment (cecum, proximal, mid or distal colon) and some genes also by diet. In contrast, there was no diet-induced effect on adipose mRNA abundance or adipocyte size. Overall, a high level of RS or AX did not demonstrate strong beneficial effects on large intestinal gene expression as indicators of colonic health or glycemic response parameters when included in a high-fat diet for pigs as a model of healthy humans.


Subject(s)
Animal Feed/analysis , Intestine, Large/metabolism , Starch/metabolism , Swine/metabolism , Animals , Diet, High-Fat , Female , Insulin/metabolism , Swine/growth & development , Xylans
12.
Cancer Prev Res (Phila) ; 4(5): 694-701, 2011 May.
Article in English | MEDLINE | ID: mdl-21467133

ABSTRACT

We investigated whether maternal exposure during pregnancy to cow's milk containing endogenous estrogens and insulin-like growth factor 1 (IGF-1) and either high or low levels of isoflavones from dietary legumes (HIM and LIM, respectively) affected carcinogen-induced mammary carcinogenesis in female rat offspring. Pregnant Sprague-Dawley rats were given HIM, LIM, or tap water (control) from gestational day (GD) 11 until birth; hereafter all rats received tap water. Mammary tumorigenesis was induced by administrating 7,12-dimethylbenz[a]anthracene (DMBA) on postnatal day 50. No differences in maternal serum estradiol (P = 0.19) and IGF-1 levels (P = 0.15) at GD 19 or birth weight among the milk and water groups were seen, but estradiol, and IGF-1 levels and birth weight were numerically higher in the LIM group than in the HIM group. Puberty onset occurred earlier in the LIM offspring than in controls (P = 0.03). Although the high isoflavone content seemed to prevent the effect on circulating estradiol and IGF-1 levels and advanced puberty onset seen in the LIM group, HIM increased DMBA-DNA adducts in the mammary gland and tended to increase mammary tumorigenesis. In contrast, offspring exposed to LIM in utero, did not exhibit increased breast cancer risk, despite having higher estradiol and IGF-1 environment and consequently earlier puberty onset. These results indicate that the phytochemical content in the cow's milk, consumed by a pregnant dam, determines how milk affects the offspring.


Subject(s)
9,10-Dimethyl-1,2-benzanthracene/toxicity , Carcinogens/toxicity , Isoflavones/therapeutic use , Mammary Neoplasms, Experimental/prevention & control , Maternal Exposure , Milk , Prenatal Exposure Delayed Effects/drug therapy , Animals , Cattle , Disease Susceptibility , Dose-Response Relationship, Drug , Female , Mammary Neoplasms, Experimental/chemically induced , Pregnancy , Pregnancy Complications, Neoplastic/drug therapy , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...