Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Appl Opt ; 62(31): 8286-8291, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-38037931

ABSTRACT

In this work, we have introduced a Z-scan thermal lens (TL) model based on Laguerre-Gaussian (LG) L G10 laser induced excitation in a mode-mismatched dual-beam configuration. The analytical expression of the TL signal and its dependence on sample to detector distance as well as the Z-scan have been derived. The theoretical analysis shows that the phase shift and TL signal are higher than the values obtained using an excitation with the T E M 00 Gaussian profile. The experimental demonstration of the theoretical approach has been performed using the L G10 and T E M 00 Gaussian beams, respectively. Experimental proofs of the model are presented and found to be in agreement, demonstrating that Laguerre-Gaussian induced excitation is more sensitive than the Gaussian one.

2.
Appl Opt ; 62(34): 9002-9008, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38108735

ABSTRACT

We report on a pump-probe thermal lensing method for measuring the linear absorption coefficient of liquids by using interferometry and numerical analysis. The method is based on interferograms generated when a localized photothermal effect is induced in the sample. The photothermal effect itself is induced by a pump beam impinging on a sample located on-axis of the probe beam, which is one of the paths of a Mach-Zehnder interferometer. A digital camera is employed as the acquisition device allowing the capture and storage of the experimental data. During the experiment, a total of three photographs are taken and stored on a personal computer, and by using an algorithm, the numerical analysis is done. Numerical analysis is subsequently used to calculate the photothermal phase difference and the normalized spatial distribution of the pump beam irradiance. Plotting the phase difference as a function of the spatial distribution of the pump beam produces a linear dependence from which the linear absorption coefficient is obtained. The sensitivity of the method (λ/1500) is validated using ethanol, methanol, and carbon disulfide.

3.
Heliyon ; 9(10): e20492, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37790966

ABSTRACT

A thermal lensing approach based on parabolic approximation and Mach-Zehnder interferometer for measuring optical absorption and thermal diffusivity coefficients in pure solvents is described in this work. The approach combines the sensitivity of both thermal lensing methods and interferometry techniques. The photothermal effect is induced by a pump laser beam generating localized changes in the refractive index of the sample, which are observed as a shift in phase of the interference pattern. Each interference pattern is recorded by means of a digital camera and stored as digital images as a function of time. The images are then numerically processed to calculate the phase shifting map for a specific time. From each phase shifting map, the experimental phase difference as a function of time is calculated giving a phase-time transient, which is fitted to a mathematical model to estimate the optical absorption and thermal diffusivity of the sample. The experimental results show that the sensitivity is approximately λ/4800 for the minimum phase difference measured.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 252: 119481, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33524821

ABSTRACT

In this work we performed dye photodegradation experiments in presence of TiO2 and Cu/Zr modified TiO2. The changes in the shape of the spectra of RB19 caused by photocatalysts under the simulated solar or UV light were monitored. Since the predominant photocatalytic mechanism can only be observed in very dilute solution of RB19, UV-Vis absorption spectrometry for higher concentrations and thermal lens spectrometry for lower concentrations have been applied to elucidate the mechanistic details of degradation processes. Bleaching of the dye was a characteristic feature, that occurred under both simulated solar and UV lights. It was also evident, that the absorption peak with maximum centered at 592 nm undergoes a slight blue shift during irradiation. The experiments carried out using UV and simulated solar light demonstrated, that two different processes responsible for the RB19 dye degradation occurred. In the initial stage of irradiation one of the processes appears under the UV light and can be recognized by a characteristic blue shift in the absorption spectrum of the solution. The second process is characteristic for irradiation by the simulated solar light which involve a blue shift at longer periods (100 min). These phenomena were attributed to the photocatalytic and photosensitization mechanisms, respectively. However, photocatalytic mechanism was also observed under simulated solar radiation, when the initial dye concentration was decreased to 5 mgL-1, and was recognized by the increase of the thermal lens signal during the initial stages of degradation process. This was possible because the thermal lens spectroscopy technique provides a limit of quantification for RB19 at the concentration level of 0.12 mg L-1, while UV-Vis spectrometry enables quantification of RB19 only down to 4 mg L-1 levels.

5.
Opt Lett ; 45(19): 5526-5529, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33001937

ABSTRACT

We report on a laser system based on difference frequency generation (DFG) to produce tunable, narrow-linewidth (<30pm), and comparatively high-energy mid-IR radiation in the 6.8 µm region. The system exploits a lithium thioindate (LiInS2) nonlinear crystal and nanosecond pulses generated by single-frequency Nd:YAG and Cr:forsterite lasers at 1064 and 1262 nm, respectively. Two experimental configurations are used: in the first one, single-pass, the mid-IR energy achieved is 205 µJ. Additional increments, up to 540 µJ, are obtained by performing double-pass through the nonlinear crystal. This laser has been developed for high-resolution photon-hungry spectroscopy in the mid-IR.

6.
Rev Sci Instrum ; 90(9): 093002, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31575267

ABSTRACT

We present the design of a Cr:forsterite based single-frequency master-oscillator power-amplifier laser system delivering much higher output energy compared to previous literature reports. The system has four amplifying stages with two-pass configuration each, thus enabling the generation of 24 mJ output energy in the spectral region around 1262 nm. It is demonstrated that the presented Cr:forsterite amplifier preserves high spectral and pulse quality, allowing a straightforward energy scaling. This laser system is a promising tool for tunable nonlinear down-conversion to the mid-infrared spectral range and will be a key building block in a system for high-resolution muonic hydrogen spectroscopy in the 6.8 µm range.

7.
Talanta ; 183: 158-163, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29567158

ABSTRACT

In the thermal lens experimental set-up we replaced the commonly employed pump laser by a halogen lamp, combined with an interference filter, providing a tuneable, nearly monochromatic pump source over the range of wavelengths 430-710 nm. Counter-propagating pump and probe beams are used and a 1 mm path-length sample cell together with the interference filter makes an optical cavity, providing amplification of the thermal lens signal, which leads to enhancement of the measurement sensitivity, and enables detection of absorbances on the order of 5 × 10-6. Amplified thermal lens signal allows us to replace the typical lock-in amplifier and digital oscilloscope with a silicon photodetector, Arduino, and a personal computer, offering the possibility for a compact, robust and portable device, useful for in-field absorption measurements in low concentration or weakly absorbing species. The use of a white light source for optical pumping, an interference filter for wavelength selection and direct diagnostic of the thermal lens signal increase the versatility of the instrument and simplifies substantially the experimental setup. Determination of Fe(II) concentrations at parts per billion levels was performed by the described white-light thermal lens spectrophotometer and the absorption spectrum for 50 µgL-1 Fe(II)-1,10-phenanthroline was well reproduced with an average measurement precision of 4%. The obtained limits of detection and quantitation of Fe(II) determination at 510 nm are 3 µgL-1 and 11 µgL-1, respectively. The calibration curve was linear in the concentration range of LOQ-500 µgL-1 with reproducibility between 2% and 6%, confirming that this instrument provides good spectrometric capabilities such as high sensitivity, tuneability and good reproducibility. In addition, the versatility of the instrument was demonstrated by recording the photothermal spectrum of gold nanostructured material and determination of excitation wavelength with most efficient optical to thermal energy conversion, which differs considerably (cca 100 nm) from the absorption maximum of the investigated sample.

8.
Appl Spectrosc ; 72(7): 1069-1073, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29381092

ABSTRACT

In this work we report on the absorption spectra of ethanol and water in the region 430-700 nm using a homemade halogen lamp-based photothermal lens spectrophotometer with a multipass probe-beam configuration. The spectra also include well resolved, higher absorption overtones. The instrument achieves high sensitivity due to multiple reflections within the optical cavity containing the sample. Finally, an Arduino board was used for collecting and digitizing the signal, thus enabling a more compact device.

9.
J Biomech ; 60: 266-269, 2017 07 26.
Article in English | MEDLINE | ID: mdl-28712542

ABSTRACT

The mechanical properties of cells are influenced by their microenvironment. Here we report cell stiffness alteration by changing the cell substrate stiffness for isolated cells and cells in contact with other cells. Polydimethylsiloxane (PDMS) is used to prepare soft substrates with three different stiffness values (173, 88 and 17kPa respectively). Breast cancer cells lines, namely HBL-100, MCF-7 and MDA-MB-231 with different level of aggressiveness are cultured on these substrates and their local elasticity is investigated by vertical indentation of the cell membrane. Our preliminary results show an unforeseen behavior of the MDA-MB-231 cells. When cultured on glass substrate as isolated cells, they are less stiff than the other two types of cells, in agreement with the general statement that more aggressive and metastatic cells are softer. However, when connected to other cells the stiffness of MDA-MB-231 cells becomes similar to the other two cell lines. Moreover, the stiffness of MDA-MB-231 cells cultured on soft PDMS substrates is significantly higher than the stiffness of the other cell types, demonstrating thus the strong influence of the environmental conditions on the mechanical properties of the cells.


Subject(s)
Breast Neoplasms/pathology , Cell Culture Techniques , Cell Line, Tumor , Dimethylpolysiloxanes , Elasticity , Humans , Mechanical Phenomena , Optical Tweezers
10.
J Biomed Opt ; 21(5): 57004, 2016 05 31.
Article in English | MEDLINE | ID: mdl-27232596

ABSTRACT

We report on the modification of mechanical properties of breast cancer cells when they get in contact with other neighboring cells of the same type. Optical tweezers vertical indentation was employed to investigate cell mechanics in isolated and contact conditions, by setting up stiffness as a marker. Two human breast cancer cell lines with different aggressiveness [MCF-7 (luminal breast cancer) and MDA-MB-231 (basal-like breast cancer)] and one normal immortalized breast cell line HBL-100 (normal and myoepithelial) were selected. We found that neighboring cells significantly alter cell stiffness: MDA-MB-231 becomes stiffer when in contact, while HBL-100 and MCF-7 exhibit softer character. Cell stiffness was probed at three cellular subregions: central (above nucleus), intermediate (cytoplasm), and near the leading edge. In an isolated condition, all cells showed a significant regional variation in stiffness: higher at the center and fading toward the leading edge. However, the regional variation becomes statistically insignificant when the cells were in contact with other neighboring cells. The proposed approach will contribute to understand the intriguing temporal sequential alterations in cancer cells during interaction with their surrounding microenvironment.


Subject(s)
Cell Physiological Phenomena , Optical Tweezers , Cell Line , Cell Line, Tumor , Cellular Microenvironment , Cytoplasm/metabolism , Humans , MCF-7 Cells
11.
Phys Rev Lett ; 113(11): 114301, 2014 Sep 12.
Article in English | MEDLINE | ID: mdl-25259983

ABSTRACT

We report experimental measurements of heat transport in rotating Rayleigh-Bénard convection in a cylindrical convection cell with an aspect ratio of Γ=1/2. The fluid is helium gas with a Prandtl number Pr=0.7. The range of control parameters for Rayleigh numbers 4×10^{9}

12.
Proc Natl Acad Sci U S A ; 110(20): 7969-70, 2013 May 14.
Article in English | MEDLINE | ID: mdl-23650372
SELECTION OF CITATIONS
SEARCH DETAIL
...