Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; 12(32): e2300640, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37781993

ABSTRACT

Intra-portal islet transplantation is currently the only clinically approved beta cell replacement therapy, but its outcome is hindered by limited cell survival due to a multifactorial reaction against the allogeneic tissue in liver. Adipose-derived stromal cells (ASCs) can potentially improve the islet micro-environment by their immunomodulatory action. The challenge is to combine both islets and ASCs in a relatively easy and consistent long-term manner in a deliverable scaffold. Manufacturing the 3D bioprinted double-layered scaffolds with primary islets and ASCs using a mix of alginate/nanofibrillated cellulose (NFC) bioink is reported. The diffusion properties of the bioink and the supportive effect of human ASCs on islet viability, glucose sensing, insulin secretion, and reducing the secretion of pro-inflammatory cytokines are demonstrated. Diabetic mice transplanted with islet-ASC scaffolds reach normoglycemia seven days post-transplantation with no significant difference between this group and the group received islets under the kidney capsules. In addition, animals transplanted with islet-ASC scaffolds stay normoglycemic and show elevated levels of C-peptide compared to mice transplanted with islet-only scaffolds. The data present a functional 3D bioprinted scaffold for islets and ASCs transplanted to the extrahepatic site and suggest a possible role of ASCs on improving the islet micro-environment.


Subject(s)
Diabetes Mellitus, Experimental , Insulin-Secreting Cells , Islets of Langerhans Transplantation , Islets of Langerhans , Mice , Humans , Animals , Diabetes Mellitus, Experimental/therapy , Diabetes Mellitus, Experimental/metabolism , Insulin Secretion , Insulin-Secreting Cells/metabolism , Stromal Cells/metabolism , Islets of Langerhans/metabolism , Insulin/metabolism
2.
Biomed Mater ; 18(4)2023 06 26.
Article in English | MEDLINE | ID: mdl-37321229

ABSTRACT

Establishing a vascular network in biofabricated tissue grafts is essential for ensuring graft survival. Such networks are dependent on the ability of the scaffold material to facilitate endothelial cell adhesion; however, the clinical translation potential of tissue-engineered scaffolds is hindered by the lack of available autologous sources of vascular cells. Here, we present a novel approach to achieving autologous endothelialisation in nanocellulose-based scaffolds by using adipose tissue-derived vascular cells on nanocellulose-based scaffolds. We used sodium periodate-mediated bioconjugation to covalently bind laminin to the scaffold surface and isolated the stromal vascular fraction and endothelial progenitor cells (EPCs; CD31+CD45-) from human lipoaspirate. Additionally, we assessed the adhesive capacity of scaffold bioconjugationin vitrousing both adipose tissue-derived cell populations and human umbilical vein endothelial cells. The results showed that the bioconjugated scaffold exhibited remarkably higher cell viability and scaffold surface coverage by adhesion regardless of cell type, whereas control groups comprising cells on non-bioconjugated scaffolds exhibited minimal cell adhesion across all cell types. Furthermore, on culture day 3, EPCs seeded on laminin-bioconjugated scaffolds showed positive immunofluorescence staining for the endothelial markers CD31 and CD34, suggesting that the scaffolds promoted progenitor differentiation into mature endothelial cells. These findings present a possible strategy for generating autologous vasculature and thereby increase the clinical relevance of 3D-bioprinted nanocellulose-based constructs.


Subject(s)
Laminin , Stromal Vascular Fraction , Humans , Alginates , Tissue Scaffolds , Human Umbilical Vein Endothelial Cells , Tissue Engineering/methods
3.
Macromol Biosci ; 23(7): e2200422, 2023 07.
Article in English | MEDLINE | ID: mdl-36729619

ABSTRACT

Injury of the cornea is a complex biological process. Regeneration of the corneal stroma can be facilitated by the presence of mesenchymal stromal cells (MSCs) and application of tissue equivalents. A new tissue-engineering strategy for corneal stroma regeneration is presented using cellularized 3D bioprinted hydrogel constructs implanted into organ cultured porcine corneas using femtosecond laser-assisted intrastromal keratoplasty. The ex vivo cultured, MSC-loaded 3D bioprinted structures remain intact, support cell survival, and contain de novo synthesized extracellular matrix components and migrating cells throughout the observation period. At day 14 postimplantation, the cellularized tissue equivalents contain few or no cells, as demonstrated by optical coherence tomography imaging and immunofluorescent staining. This study successfully combines a laboratory-based method with modern, patient-care practice to produce a cell-laden tissue equivalent for corneal implantation. Optimal bioink composition and cellularization of tissue equivalents are essential in fine-tuning a method to promote the current technique as a future treatment modality.


Subject(s)
Bioprinting , Corneal Transplantation , Mesenchymal Stem Cells , Swine , Animals , Cornea , Corneal Transplantation/methods , Corneal Stroma/surgery , Lasers , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Printing, Three-Dimensional
SELECTION OF CITATIONS
SEARCH DETAIL
...