Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Epigenomics ; : 1-16, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39263873

ABSTRACT

Aim: Assess if cord blood differentially methylated regions (DMRs) representing human metastable epialleles (MEs) associate with offspring adiposity in 588 maternal-infant dyads from the Colorado Health Start Study.Materials & methods: DNA methylation was assessed via the Illumina 450K array (~439,500 CpG sites). Offspring adiposity was obtained via air displacement plethysmography. Linear regression modeled the association of DMRs potentially representing MEs with adiposity.Results & conclusion: We identified two potential MEs, ZFP57, which associated with infant adiposity change and B4GALNT4, which associated with infancy and childhood adiposity change. Nine DMRs annotating to genes that annotated to MEs associated with change in offspring adiposity (false discovery rate <0.05). Methylation of approximately 80% of DMRs identified associated with decreased change in adiposity.


[Box: see text].

2.
Epigenetics ; 18(1): 2254971, 2023 12.
Article in English | MEDLINE | ID: mdl-37691382

ABSTRACT

Background: 'Epigenetic clocks' have been developed to accurately predict chronologic gestational age and have been associated with child health outcomes in prior work.Methods: We meta-analysed results from four prospective U.S cohorts investigating the association between epigenetic age acceleration estimated using blood DNA methylation collected at birth and preschool age Childhood Behavior Checklist (CBCL) scores.Results: Epigenetic ageing was not significantly associated with CBCL total problem scores (ß = 0.33, 95% CI: -0.95, 0.28) and DSM-oriented pervasive development problem scores (ß = -0.23, 95% CI: -0.61, 0.15). No associations were observed for other DSM-oriented subscales.Conclusions: The meta-analysis results suggest that epigenetic gestational age acceleration is not associated with child emotional and behavioural functioning for preschool age group. These findings may relate to our study population, which includes two cohorts enriched for ASD and one preterm birth cohort.; future work should address the role of epigenetic age in child health in other study populations.Abbreviations: DNAm: DNA methylation; CBCL: Child Behavioral Checklist; ECHO: Environmental Influences on Child Health Outcomes; EARLI: Early Autism Risk Longitudinal Investigation; MARBLES: Markers of Autism Risk in Babies - Learning Early Signs; ELGAN: Extremely Low Gestational Age Newborns; ASD: autism spectrum disorder; BMI: body mass index; DSM: Diagnostic and Statistical Manual of Mental Disorders.


Subject(s)
Autism Spectrum Disorder , Premature Birth , Child, Preschool , Humans , Infant, Newborn , DNA Methylation , Epigenesis, Genetic , Prospective Studies
3.
Environ Res ; 231(Pt 2): 116215, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37224946

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are ubiquitous, environmentally persistent chemicals, and prenatal exposures have been associated with adverse child health outcomes. Prenatal PFAS exposure may lead to epigenetic age acceleration (EAA), defined as the discrepancy between an individual's chronologic and epigenetic or biological age. OBJECTIVES: We estimated associations of maternal serum PFAS concentrations with EAA in umbilical cord blood DNA methylation using linear regression, and a multivariable exposure-response function of the PFAS mixture using Bayesian kernel machine regression. METHODS: Five PFAS were quantified in maternal serum (median: 27 weeks of gestation) among 577 mother-infant dyads from a prospective cohort. Cord blood DNA methylation data were assessed with the Illumina HumanMethylation450 array. EAA was calculated as the residuals from regressing gestational age on epigenetic age, calculated using a cord-blood specific epigenetic clock. Linear regression tested for associations between each maternal PFAS concentration with EAA. Bayesian kernel machine regression with hierarchical selection estimated an exposure-response function for the PFAS mixture. RESULTS: In single pollutant models we observed an inverse relationship between perfluorodecanoate (PFDA) and EAA (-0.148 weeks per log-unit increase, 95% CI: -0.283, -0.013). Mixture analysis with hierarchical selection between perfluoroalkyl carboxylates and sulfonates indicated the carboxylates had the highest group posterior inclusion probability (PIP), or relative importance. Within this group, PFDA had the highest conditional PIP. Univariate predictor-response functions indicated PFDA and perfluorononanoate were inversely associated with EAA, while perfluorohexane sulfonate had a positive association with EAA. CONCLUSIONS: Maternal mid-pregnancy serum concentrations of PFDA were negatively associated with EAA in cord blood, suggesting a pathway by which prenatal PFAS exposures may affect infant development. No significant associations were observed with other PFAS. Mixture models suggested opposite directions of association between perfluoroalkyl sulfonates and carboxylates. Future studies are needed to determine the importance of neonatal EAA for later child health outcomes.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Prenatal Exposure Delayed Effects , Infant , Infant, Newborn , Pregnancy , Child , Female , Humans , Fetal Blood , Prenatal Exposure Delayed Effects/chemically induced , Prospective Studies , Bayes Theorem , Alkanesulfonates , Mothers , Carboxylic Acids , Epigenesis, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL