Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
2.
Front Med (Lausanne) ; 9: 1052318, 2022.
Article in English | MEDLINE | ID: mdl-36582287

ABSTRACT

Gene therapy would greatly benefit from a method to regulate therapeutic gene expression temporally. Riboswitches are small RNA elements that have been studied for their potential use in turning transgene expression on or off by ligand binding. We compared several tetracycline and toyocamycin-inducible ON-riboswitches for a drug responsive transgene expression. The tetracycline-dependent K19 riboswitch showed the best control and we successfully applied it to different transgenes. The induction of gene expression was 6- to 10-fold, dose-dependent, reversible, and occurred within hours after the addition of a clinically relevant tetracycline dose, using either plasmid or adeno-associated virus (AAV) vectors. To enhance the switching capacity, we further optimized the gene cassette to control the expression of a potential therapeutic gene for cardiovascular diseases, VEGF-B. Using two or three riboswitches simultaneously reduced leakiness and improved the dynamic range, and a linker sequence between the riboswitches improved their functionality. The riboswitch function was promoter-independent, but a post-transcriptional WPRE element in the expression cassette reduced its functionality. The optimized construct was a dual riboswitch at the 3' end of the transgene with a 100 bp linker sequence. Our study reveals significant differences in the function of riboswitches and provides important aspects on optimizing expression cassette designs. The findings will benefit further research and development of riboswitches.

3.
Exp Eye Res ; 224: 109237, 2022 11.
Article in English | MEDLINE | ID: mdl-36096189

ABSTRACT

Pathological angiogenesis related to neovascularization in the eye is mediated through vascular endothelial growth factors (VEGFs) and their receptors. Ocular neovascular-related diseases are mainly treated with anti-VEGF agents. In this study we evaluated the efficacy and safety of novel gene therapy using adeno associated virus 2 vector expressing a truncated form of soluble VEGF receptor-2 fused to the Fc-part of human IgG1 (AAV2-sVEGFR-2-Fc) to inhibit ocular neovascularization in laser induced choroidal neovascularization (CNV) in mice. The biological activity of sVEGFR-2-Fc was determined in vitro. It was shown that sVEGFR-2-Fc secreted from ARPE-19 cells was able to bind to VEGF-A165 and reduce VEGF-A165 induced cell growth and survival. A single intravitreal injection (IVT) of AAV2-sVEGFR-2-Fc (1 µl, 4.7 × 1012 vg/ml) one-month prior laser photocoagulation did not cause any changes in the retinal morphology and significantly suppressed fluorescein leakage at 7, 14, 21 and 28 days post-lasering compared to controls. Macrophage infiltration was observed after the injection of both AAV2-sVEGFR-2-Fc and PBS. Our findings indicate that AAV2 mediated gene delivery of the sVEGFR-2-Fc efficiently reduces formation of CNV and could be developed to a therapeutic tool for the treatment of retinal diseases associated with neovascularization.


Subject(s)
Choroidal Neovascularization , Mice , Humans , Animals , Choroidal Neovascularization/drug therapy , Vascular Endothelial Growth Factor A/metabolism , Intravitreal Injections , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism , Dependovirus/genetics , Genetic Vectors , Mice, Inbred C57BL , Genetic Therapy , Angiogenesis Inhibitors/therapeutic use , Vascular Endothelial Growth Factors/genetics , Vascular Endothelial Growth Factors/metabolism , Vascular Endothelial Growth Factors/therapeutic use , Immunoglobulin G/metabolism , Fluoresceins/metabolism
4.
Front Bioeng Biotechnol ; 10: 907538, 2022.
Article in English | MEDLINE | ID: mdl-35992336

ABSTRACT

Background: Previous studies have indicated that vascular endothelial growth factor B186 (VEGF-B186) supports coronary vascular growth in normal and ischemic myocardium. However, previous studies also indicated that induction of ventricular arrhythmias is a severe side effect preventing the use of VEGF-B186 in cardiac gene therapy, possibly mediated by binding to neuropilin 1 (NRP1). We have designed a novel VEGF-B186 variant, VEGF-B186R127S, which is resistant to proteolytic processing and unable to bind to NRP1. Here, we studied its effects on mouse heart to explore the mechanism of VEGF-B186-induced vascular growth along with its effects on cardiac performance. Methods: Following the characterization of VEGF-B186R127S, we performed ultrasound-guided adenoviral VEGF-B186R127S gene transfers into the murine heart. Vascular growth and heart functions were analyzed using immunohistochemistry, RT-PCR, electrocardiogram and ultrasound examinations. Endothelial progenitor cells (EPCs) were isolated from the circulating blood and characterized. Also, in vitro experiments were carried out in cardiac endothelial cells with adenoviral vectors. Results: The proteolytically resistant VEGF-B186R127S significantly induced vascular growth in mouse heart. Interestingly, VEGF-B186R127S gene transfer increased the number of circulating EPCs that secreted VEGF-A. Other proangiogenic factors were also present in plasma and heart tissue after the VEGF-B186R127S gene transfer. Importantly, VEGF-B186R127S gene transfer did not cause any side effects, such as arrhythmias. Conclusion: VEGF-B186R127S induces vascular growth in mouse heart by recruiting EPCs. VEGF-B186R127S is a novel therapeutic agent for cardiac therapeutic angiogenesis to rescue myocardial tissue after an ischemic insult.

5.
Mol Ther Oncolytics ; 26: 141-157, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35847448

ABSTRACT

Interferon alpha (IFNα) gene therapy is emerging as a new treatment option for patients with non-muscle invasive bladder cancer (NMIBC). Adenoviral vectors expressing IFNα have shown clinical efficacy treating bacillus Calmette-Guerin (BCG)-unresponsive bladder cancer (BLCA). However, transient transgene expression and adenoviral immunogenicity may limit therapeutic activity. Lentiviral vectors can achieve stable transgene expression and are less immunogenic. In this study, we evaluated lentiviral vectors expressing murine IFNα (LV-IFNα) and demonstrate IFNα expression by transduced murine BLCA cell lines, bladder urothelium, and within the urine following intravesical instillation. Murine BLCA cell lines (MB49 and UPPL1541) were sensitive to IFN-mediated cell death after LV-IFNα, whereas BBN975 was inherently resistant. Upregulation of interleukin-6 (IL-6) predicted sensitivity to IFN-mediated cell death mediated by caspase signaling, which when inhibited abrogated IFN-mediated cell killing. Intravesical therapy with LV-IFNα/Syn3 in a syngeneic BLCA model significantly improved survival, and molecular analysis of treated tumors revealed upregulation of apoptotic and immune-cell-mediated death pathways. In particular, biomarker discovery analysis identified three clinically actionable targets, PD-L1, epidermal growth factor receptor (EGFR), and ALDHA1A, in murine tumors treated with LV-IFNα/Syn3. Our findings warrant the comparison of adenoviral and LV-IFNα and the study of novel combination strategies with IFNα gene therapy for the BLCA treatment.

6.
Gene Ther ; 29(10-11): 643-652, 2022 11.
Article in English | MEDLINE | ID: mdl-35132204

ABSTRACT

Therapeutic angiogenesis induced by gene therapy is a promising approach to treat patients suffering from severe coronary artery disease. In small experimental animals, adeno-associated viruses (AAVs) have shown good transduction efficacy and long-term transgene expression in heart muscle and other tissues. However, it has been difficult to achieve cardiac-specific angiogenic effects with AAV vectors. We tested the hypothesis whether AAV2 gene transfer (1 × 1013 vg) of vascular endothelial growth factor B (VEGF-B186) together with immunosuppressive corticosteroid treatment can induce long-term cardiac-specific therapeutic effects in the porcine ischemic heart. Gene transfers were delivered percutaneously using direct intramyocardial injections, improving targeting and avoiding direct contact with blood, thus reducing the likelihood of immediate immune reactions. After 1- and 6-month time points, the capillary area was analyzed, myocardial perfusion reserve (MPR) was measured with radiowater positron emission tomography ([15O]H2O-PET), and fluorodeoxyglucose ([18F]FDG) uptake was used to evaluate myocardial viability. Clinical chemistry and immune responses were analyzed using standard methods. After 1- and 6-month follow-up, AAV2-VEGF-B186 gene transfer failed to induce angiogenesis and improve myocardial perfusion and viability. Here, we show that inflammatory responses attenuated the therapeutic effect of AAV2 gene transfer by significantly reducing successful transduction and long-term gene expression despite the efforts to reduce the likelihood of immune reactions and the use of targeted local gene transfer methods.


Subject(s)
Genetic Vectors , Vascular Endothelial Growth Factor B , Animals , Swine , Vascular Endothelial Growth Factor B/genetics , Genetic Vectors/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/therapeutic use , Dependovirus/genetics , Genetic Therapy/methods , Myocardium
7.
iScience ; 24(12): 103533, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34917905

ABSTRACT

Vascular endothelial growth factor B (VEGF-B) is an interesting therapeutic candidate for coronary artery disease. However, it can also cause ventricular arrhythmias, potentially preventing its use in clinics. We cloned VEGF-B isoforms with different receptor binding profiles to clarify the roles of VEGFR-1 and Nrp-1 in angiogenesis and to see if angiogenic properties can be maintained while avoiding side effects. VEGF-B constructs were studied in vivo using adenovirus (Ad)-mediated intramyocardial gene transfers into the normoxic and ischemic porcine heart (n = 51). It was found that the unprocessed isoform VEGF-B186R127S is as efficient angiogenic growth factor as the native VEGF-B186 in normoxic and ischemic heart. In addition, AdVEGF-B186R127S increased myocardial perfusion reserve by 22% in ischemic heart without any side effects. AdVEGF-B127 (VEGFR-1 and Nrp-1 ligand) and AdVEGF-B109 (VEGFR-1 ligand) did not induce angiogenesis. Thus, VEGF-B186 is angiogenic only before its proteolytic processing to VEGF-B127. Only the VEGF-B186 C-terminal fragment was associated with arrhythmias.

8.
Sci Rep ; 11(1): 21698, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737404

ABSTRACT

With a limited coding capacity of 4.7 kb, adeno-associated virus (AAV) genome has evolved over-lapping genes to maximise the usage of its genome. An example is the recently found ORF in the cap gene, encoding membrane-associated accessory protein (MAAP), located in the same genomic region as the VP1/2 unique domain, but in a different reading frame. This 13 KDa protein, unique to the dependovirus genus, is not homologous to any known protein. Our studies confirm that MAAP translation initiates from the first CTG codon found in the VP1 ORF2. We have further observed MAAP localised in the plasma membrane, in the membranous structures in close proximity to the nucleus and to the nuclear envelope by co-transfecting with plasmids encoding the wild-type AAV (wt-AAV) genome and adenovirus (Ad) helper genes. While keeping VP1/2 protein sequence identical, both inactivation and truncation of MAAP translation affected the emergence and intracellular distribution of the AAV capsid proteins. We have demonstrated that MAAP facilitates AAV replication and has a role in controlling Ad infection. Additionally, we were able to improve virus production and capsid integrity through a C-terminal truncation of MAAP while other modifications led to increased packaging of contaminating, non-viral DNA. Our results show that MAAP plays a significant role in AAV infection, with profound implications for the production of therapeutic AAV vectors.


Subject(s)
Capsid Proteins/metabolism , Dependovirus/metabolism , Membrane Proteins/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Dependovirus/genetics , Genetic Vectors , Humans , Membrane Proteins/physiology , Plasmids , Viral Proteins/genetics , Virion/metabolism , Virus Assembly , Virus Replication
9.
Front Physiol ; 10: 224, 2019.
Article in English | MEDLINE | ID: mdl-30930791

ABSTRACT

Vascular endothelial growth factors (VEGFs) are key mediators of endothelial cell (EC) function in angiogenesis. Emerging knowledge also supports the involvement of axon guidance-related factors in the regulation of angiogenesis and vascular patterning. In the current study, we demonstrate that fibronectin and leucine-rich transmembrane protein-3 (FLRT3), an axon guidance-related factor connected to the regulation of neuronal cell outgrowth and morphogenesis but not to VEGF-signaling, was upregulated in ECs after VEGF binding to VEGFR2. We found that FLRT3 exhibited a transcriptionally paused phenotype in non-stimulated human umbilical vein ECs. After VEGF-stimulation its nascent RNA and mRNA-levels were rapidly upregulated suggesting that the regulation of FLRT3 expression is mainly occurring at the level of transcriptional elongation. Blockage of FLRT3 by siRNA decreased survival of ECs and their arrangement into capillary-like structures but enhanced cell migration and wound closure in wound healing assay. Bifunctional role of FLRT3 in repulsive vs. adhesive cell signaling has been already detected during embryogenesis and neuronal growth, and depends on its interactions either with UNC5B or another FLRT3 expressed by adjacent cells. In conclusion, our findings demonstrate that besides regulating neuronal cell outgrowth and morphogenesis, FLRT3 has a novel role in ECs via regulating VEGF-stimulated EC-survival, migration, and tube formation. Thus, FLRT3 becomes a new member of the axon guidance-related factors which participate in the VEGF-signaling and regulation of the EC functions.

10.
Noncoding RNA ; 4(4)2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30463374

ABSTRACT

The role and function of long non-coding RNAs (lncRNAs) in modulating gene expression is becoming apparent. Vascular endothelial growth factor A (VEGF-A) is a key regulator of blood vessel formation and maintenance making it a promising therapeutic target for activation in ischemic diseases. In this study, we uncover a functional role for two antisense VEGF-A lncRNAs, RP1-261G23.7 and EST AV731492, in transcriptional regulation of VEGF-A during hypoxia. We find here that both lncRNAs are polyadenylated, concordantly upregulated with VEGF-A, localize to the VEGF-A promoter and upstream elements in a hypoxia dependent manner either as a single-stranded RNA or DNA bound RNA, and are associated with enhancer marks H3K27ac and H3K9ac. Collectively, these data suggest that VEGF-A antisense lncRNAs, RP1-261G23.7 and EST AV731492, function as VEGF-A promoter enhancer-like elements, possibly by acting as a local scaffolding for proteins and also small RNAs to tether.

11.
Sci Total Environ ; 640-641: 387-399, 2018 Nov 01.
Article in English | MEDLINE | ID: mdl-29860010

ABSTRACT

Current climate warming is expected to continue in coming decades, whereas high N deposition may stabilize, in contrast to the clear decrease in S deposition. These pressures have distinctive regional patterns and their resulting impact on soil conditions is modified by local site characteristics. We have applied the VSD+ soil dynamic model to study impacts of deposition and climate change on soil properties, using MetHyd and GrowUp as pre-processors to provide input to VSD+. The single-layer soil model VSD+ accounts for processes of organic C and N turnover, as well as charge and mass balances of elements, cation exchange and base cation weathering. We calibrated VSD+ at 26 ecosystem study sites throughout Europe using observed conditions, and simulated key soil properties: soil solution pH (pH), soil base saturation (BS) and soil organic carbon and nitrogen ratio (C:N) under projected deposition of N and S, and climate warming until 2100. The sites are forested, located in the Mediterranean, forested alpine, Atlantic, continental and boreal regions. They represent the long-term ecological research (LTER) Europe network, including sites of the ICP Forests and ICP Integrated Monitoring (IM) programmes under the UNECE Convention on Long-range Transboundary Air Pollution (LRTAP), providing high quality long-term data on ecosystem response. Simulated future soil conditions improved under projected decrease in deposition and current climate conditions: higher pH, BS and C:N at 21, 16 and 12 of the sites, respectively. When climate change was included in the scenario analysis, the variability of the results increased. Climate warming resulted in higher simulated pH in most cases, and higher BS and C:N in roughly half of the cases. Especially the increase in C:N was more marked with climate warming. The study illustrates the value of LTER sites for applying models to predict soil responses to multiple environmental changes.

12.
Glob Chang Biol ; 24(8): 3603-3619, 2018 08.
Article in English | MEDLINE | ID: mdl-29604157

ABSTRACT

Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosystems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Altot ) and dissolved organic carbon were determined for the period 1995-2012. Plots with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10-20 cm, 104 plots) and subsoil (40-80 cm, 162 plots). There was a large decrease in the concentration of sulphate (SO42-) in soil solution; over a 10-year period (2000-2010), SO42- decreased by 52% at 10-20 cm and 40% at 40-80 cm. Nitrate was unchanged at 10-20 cm but decreased at 40-80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca2+  + Mg2+  + K+ ) and Altot over the entire dataset. The response of soil solution acidity was nonuniform. At 10-20 cm, ANC increased in acid-sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40-80 cm, ANC remained unchanged in acid-sensitive soils (base saturation ≤20%, pHCaCl2 ≤ 4.5) and decreased in better-buffered soils (base saturation >20%, pHCaCl2 > 4.5). In addition, the molar ratio of Bc to Altot either did not change or decreased. The results suggest a long-time lag between emission abatement and changes in soil solution acidity and underline the importance of long-term monitoring in evaluating ecosystem response to decreases in deposition.


Subject(s)
Environmental Monitoring , Forests , Soil/chemistry , Acids/chemistry , Europe , Hydrogen-Ion Concentration , Nitrates/analysis , Nitrogen/analysis , Potassium/analysis , Soil Pollutants/analysis , Sulfates/analysis , Sulfur/analysis
13.
Sci Total Environ ; 609: 974-981, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28783914

ABSTRACT

The current understanding, based on previous studies, is that increased discharge nutrient concentrations from boreal peatlands drained for forestry return to similar levels as those of pristine peatlands within about 20years after their drainage. As an implicit consequence of this finding, it has been assumed that there are no long-term increasing trends in nutrient exports from these peatlands after the establishment of forestry. We analysed discharge total nitrogen (TN) and phosphorus (TP) concentration data from 54 catchments with undrained pristine peatlands and 34 catchments with drained peatlands using data with considerably longer drainage history than in previous studies. Our results agree with previous studies in that discharge TN and TP concentrations in areas drained 20-30years ago did not differ much from those in pristine sites. However, we also observed that the TN and TP concentrations were increasing with years since drainage of these catchments. Discharge TN and TP concentrations were over two times higher in areas drained 60years ago when compared with more recently drained areas. Our results challenge the current perceptions by showing that forestry-drained peatlands may contribute to water eutrophication considerably more than previously estimated.

14.
Sci Rep ; 7(1): 5525, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28717175

ABSTRACT

Vascular Endothelial Growth Factors (VEGFs) are promising molecules for the treatment of ischemic diseases by pro-angiogenic therapy. Snake venom VEGFs are a novel subgroup with unique receptor binding profiles and as such are potential new therapeutic agents. We determined the ligand-receptor interactions, gene regulation and angiogenic properties of Vipera ammodytes venom VEGF, Vammin, and compared it to the canonical angiogenic factor VEGF-A to evaluate the use of Vammin for therapeutic angiogenesis. Vammin efficiently induced VEGFR-2 mediated proliferation and expression of genes associated with proliferation, migration and angiogenesis. VEGF-A165 and especially VEGF-A109 induced less pronounced effects. Vammin regulates a number of signaling pathways by inducing the expression of NR4A family nuclear receptors and regulators of calcium signaling and MAP kinase pathways. Interestingly, MARC1, which encodes an enzyme discovered to catalyze reduction of nitrate to NO, was identified as a novel VEGFR-2 regulated gene. In rabbit skeletal muscle adenoviral delivery of Vammin induced prominent angiogenic responses. Both the vector dose and the co-receptor binding of the ligand were critical parameters controlling the type of angiogenic response from sprouting angiogenesis to vessel enlargement. Vammin induced VEGFR-2/NRP-1 mediated signaling more effectively than VEGF-A, consequently it is a promising candidate for development of pro-angiogenic therapies.


Subject(s)
Muscle, Skeletal/metabolism , Neovascularization, Physiologic/drug effects , Signal Transduction/drug effects , Vascular Endothelial Growth Factor A/pharmacology , Viper Venoms/metabolism , Amino Acid Sequence , Animals , Cell Proliferation/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Mitogen-Activated Protein Kinases/metabolism , Nerve Tissue Proteins/metabolism , Protein Structure, Tertiary , Rabbits , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Sequence Alignment , Snakes , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Viper Venoms/chemistry , Viper Venoms/pharmacology
15.
Angiogenesis ; 20(1): 109-124, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27873103

ABSTRACT

AIMS: Histamine and vascular endothelial growth factor A (VEGF) are central regulators in vascular pathologies. Their gene regulation leading to vascular remodeling has remained obscure. In this study, EC regulation mechanisms of histamine and VEGF were compared by RNA sequencing of primary endothelial cells (ECs), functional in vitro assays and in vivo permeability mice model. METHODS AND RESULTS: By RNA sequencing, similar transcriptional alterations of genes involved in activation of primary ECs, cell proliferation and adhesion were observed between histamine and VEGF. Seventy-six commonly regulated genes were found, representing ~53% of all VEGF-regulated transcripts and ~26% of all histamine-regulated transcripts. Both factors regulated tight junction formation and expression of pro-angiogenic transcription factors (TFs) affecting EC survival, migration and tube formation. Novel claudin-5 upstream regulatory genes were identified. VEGF was demonstrated to regulate expression of SNAI2, whereas pro-angiogenic TFs NR4A1, MYCN and RCAN1 were regulated by both histamine and VEGF. Claudin-5 was shown to be regulated VEGFR2/PI3K-Akt dependently by VEGF and PI3K-Akt independently by histamine. Interleukin-8 was shown to downregulate claudin-5 by histamine. Additionally, SNAI2, NR4A1 and MYCN were shown to mediate EC survival, migration and tube formation and to regulate expression of claudin-5. Further systemic delivery of VEGF and histamine was shown to induce a fast vascular hyperpermeability response in intact vasculature of C57/Bl6 mice followed by regulation of NR4A1 and MYCN. CONCLUSIONS: Our study identifies novel claudin-5 upstream regulatory genes of histamine and VEGF that induce cellular angiogenic processes. Our results increase knowledge of angiogenic EC phenotype and provide novel treatment targets for vascular pathologies.


Subject(s)
Claudin-5/metabolism , Histamine/pharmacology , Interleukin-8/metabolism , Neovascularization, Physiologic/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Snail Family Transcription Factors/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Animals , Capillary Permeability/drug effects , Cell Adhesion/drug effects , Claudin-5/genetics , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Gene Expression Regulation/drug effects , Gene Ontology , Hepatocyte Growth Factor/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mice, Inbred C57BL , Models, Biological , Neovascularization, Physiologic/genetics , Organ Specificity/drug effects , Signal Transduction/drug effects , Tight Junctions/drug effects , Tight Junctions/metabolism , Transcription Factors/metabolism , Transcriptome , Vascular Endothelial Growth Factor Receptor-2/metabolism
16.
Environ Sci Technol ; 50(18): 9943-51, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27536961

ABSTRACT

The isotopic composition of Pb was determined in Finnish peat bogs and their porewaters from Harjavalta (HAR, near a Cu-Ni smelter), Outokumpu (OUT, near a Cu-Ni mine), and Hietajärvi (HIJ, a background site). At HIJ and OUT, the porewaters yielded similar concentrations (0.1-0.7 µg/L) and isotopic composition ((206)Pb/(207)Pb = 1.154-1.164). In contrast, the peat profile from HAR yielded greater concentrations of Pb in the porewaters (average 2.4 µg/L), and the Pb is less radiogenic ((206)Pb/(207)Pb = 1.121-1.149). Acidification of the bog surface waters to pH 3.5 by SO2 emitted from smelting (compared to pH 4.0 at the control site) apparently promotes the dissolution of Pb-bearing aerosols, as well as desorption of metals from the surfaces of these particles and from the peat matrix. Despite this, the chronology of anthropogenic, atmospheric deposition for the past millenium recorded by the isotopic composition of Pb in all three peat bogs is remarkably similar. While the immobility of Pb in the peat cores may appear inconsistent with the elevated porewater Pb concentrations, Pb concentrations in the aqueous phase never amount to more than 0.01% of the total Pb at any given depth so that the potential for migration remains small. The low rates of vertical water movement in bogs generally combined with the size of the metal-containing particles in solution may be additional factors limiting Pb mobilization.


Subject(s)
Soil , Wetlands , Environmental Monitoring , Finland , Lead
17.
Environ Monit Assess ; 188(4): 228, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26979172

ABSTRACT

Forest harvesting, especially when intensified harvesting method as whole-tree harvesting with stump lifting (WTHs) are used, may increase mercury (Hg) and methylmercury (MeHg) leaching to recipient water courses. The effect can be enhanced if the underlying bedrock and overburden soil contain Hg. The impact of stem-only harvesting (SOH) and WTHs on the concentrations of Hg and MeHg as well as several other variables in the ditch water was studied using a paired catchment approach in eight drained peatland-dominated catchments in Finland (2008-2012). Four of the catchments were on felsic bedrock and four on black schist bedrock containing heavy metals. Although both Hg and MeHg concentrations increased after harvesting in all treated sites according to the randomized intervention analyses (RIAs), there was only a weak indication of a harvest-induced mobilization of Hg and MeHg into the ditches. Furthermore, no clear differences between WTHs and SOH were found, although MeHg showed a nearly significant difference (p = 0.06) between the harvesting regimes. However, there was a clear bedrock effect, since the MeHg concentrations in the ditch water were higher at catchments on black schist than at those on felsic bedrock. The pH, suspended solid matter (SSM), dissolved organic carbon (DOC), and iron (Fe) concentrations increased after harvest while the sulfate (SO4-S) concentration decreased. The highest abundances of sulfate-reducing bacteria (SRB) were found on the sites with high MeHg concentrations. The biggest changes in ditch water concentrations occurred first 2 years after harvesting.


Subject(s)
Environmental Monitoring , Forestry/methods , Mercury/analysis , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis , Finland , Forestry/statistics & numerical data , Forests , Iron , Soil/chemistry , Trees
18.
Cardiovasc Res ; 107(2): 267-76, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26002231

ABSTRACT

AIMS: Slit2 is a possible modulator of VEGF-induced angiogenesis, but its effects have not been tested on large animal models. We studied the effect of Slit2 on therapeutic angiogenesis induced by VEGF receptor 2 (VEGFR2) ligands Vammin and VEGF-D(ΔNΔC) in vivo in rabbit skeletal muscles. The Slit2 target genes were also studied by RNA sequencing in endothelial cells. METHODS AND RESULTS: Adenoviral intramuscular gene transfers were performed into New Zealand White rabbit hindlimbs. Confocal and multiphoton microscopes were used for blood vessel imaging. Signaling experiments and gene expression analyses were performed to study mechanisms of Slit2 action. Slit2 decreased VEGFR2-mediated vascular permeability. Slit2 also reduced VEGFR2-mediated increase in blood perfusion and capillary enlargement, whereas sprouting of the capillaries was increased. Slit2 gene transfer alone did not have any effects on vascular functions or morphology. VEGFR2 activation was not affected by Slit2, but eNOS phosphorylation was diminished. The transcriptome profiling showed Slit2 down-regulating angiogenesis-related genes such as Nuclear receptor subfamily 4 group A member 1 (NR4A1) and Stanniocalcin-1 (STC-1) as well as genes related to endothelial cell migration and vascular permeability. CONCLUSION: Combining Slit2 with VEGFs adjusts VEGFR2-mediated angiogenic effects into a more physiological direction. This possibly allows the use of higher VEGF vector doses to achieve a more widespread vector and VEGF distribution in the target tissues leading to a better therapeutic outcome while reducing excess vascular permeability.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Intercellular Signaling Peptides and Proteins/metabolism , Muscle, Skeletal/metabolism , Nerve Tissue Proteins/metabolism , Nitric Oxide Synthase Type III/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Cell Movement/genetics , Cells, Cultured , Female , Genetic Therapy/methods , Hindlimb/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Nerve Tissue Proteins/genetics , Rabbits
19.
Chemosphere ; 124: 47-53, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25434268

ABSTRACT

Most often, only total mercury concentrations in soil samples are determined in environmental studies. However, the determination of extremely toxic methylmercury (MeHg) in addition to the total mercury is critical to understand the biogeochemistry of mercury in the environment. In this study, N2-assisted distillation and acidic KBr/CuSO4 solvent extraction methods were applied to isolate MeHg from wet peat soil samples collected from boreal forest catchments. Determination of MeHg was performed using a purge and trap GC-ICP-MS technique with a species-specific isotope dilution quantification. Distillation is known to be more prone to artificial MeHg formation compared to solvent extraction which may result in the erroneous MeHg results, especially with samples containing high amounts of inorganic mercury. However, methylation of inorganic mercury during the distillation step had no effect on the reliability of the final MeHg results when natural peat soil samples were distilled. MeHg concentrations determined in peat soil samples after distillation were compared to those determined after the solvent extraction method. MeHg concentrations in peat soil samples varied from 0.8 to 18 µg kg(-1) (dry weight) and the results obtained with the two different methods did not differ significantly (p=0.05). The distillation method with an isotope dilution GC-ICP-MS was shown to be a reliable method for the determination of low MeHg concentrations in unpolluted soil samples. Furthermore, the distillation method is solvent-free and less time-consuming and labor-intensive when compared to the solvent extraction method.


Subject(s)
Distillation , Environmental Monitoring/methods , Gas Chromatography-Mass Spectrometry , Liquid-Liquid Extraction , Methylmercury Compounds/analysis , Soil Pollutants/analysis , Soil/chemistry , Bromides/chemistry , Copper Sulfate/chemistry , Nitrogen/chemistry , Potassium Compounds/chemistry , Solvents/chemistry
20.
Environ Monit Assess ; 186(11): 7733-52, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25096641

ABSTRACT

The main objective of this study was to examine if any detectable trends in dissolved organic carbon (DOC), sulphate (SO4-S) concentrations and acid neutralizing capacity (ANC) in throughfall (TF) and soil water (SW) could be found during 1990-2010 and to relate them to recent changes in decreased acid deposition. The study was conducted in seven boreal coniferous forest sites: four of which are managed and three unmanaged forests sites. Generally, temporal trend showed a significant decrease in SO4-S concentrations in bulk precipitation (BP), TF and SW. At some of the sites, there was an increasing tendency in BP and TF in the DOC concentrations. This feature coincides with decreasing SO4-S concentration, indicating that SO4-S may be an important driver of DOC release from the canopy. However, a slightly increased temperature, larger senescing needle mass and consequently increased decaying activity in the canopy may partly explain the increasing trend in DOC. In SW, no consistent DOC trend was seen. At some sites, the decreased base cation concentrations mostly account for the decrease in the ANC values in SW and TF.


Subject(s)
Carbon/analysis , Environmental Monitoring , Forests , Soil Pollutants/analysis , Soil/chemistry , Climate , Finland , Fresh Water/chemistry , Hydrogen-Ion Concentration , Sulfates/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...