Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Magn Reson ; 364: 107707, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38908331

ABSTRACT

While pulsed field gradient stimulated echo nuclear magnetic resonance (PFGSTE NMR) spectroscopy has found widespread use in the quantification of self-diffusivity for many NMR-active nuclei, extending this technique to uncommon nuclei with unfavorable NMR properties remains an active area of research. Potassium-39 (39K) is an archetypical NMR nucleus exhibiting an unfavorable gyromagnetic ratio combined with a very low Larmor frequency. Despite these unfavorable properties, this work demonstrates that 39K PFGSTE NMR experiments are possible in aqueous solutions of concentrated potassium nitrite. Analysis of the results indicates that 39K NMR diffusometry is feasible when the nuclei exhibit spin-lattice and spin-spin relaxation coefficients on the order of 60-100 ms and 50-100 ms, respectively. The diffusivity of 39K followed Arrhenius behavior, and comparative 23Na, 7Li, and 1H PFGSTE NMR studies of equimolal sodium nitrite and lithium nitrite solutions led to correlations between the enthalpy of hydration with the activation energy governing self-diffusion of the cations and also of water. Realizing the feasibility of 39K PFGSTE NMR spectroscopy has a widespread impact across energy sciences because potassium is a common alkali element in energy storage materials and other applications.

2.
J Phys Chem Lett ; 15(19): 5076-5087, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38708887

ABSTRACT

The dynamics, orientational anisotropy, diffusivity, viscosity, and density were measured for concentrated lithium salt solutions, including lithium chloride (LiCl), lithium bromide (LiBr), lithium nitrite (LiNO2), and lithium nitrate (LiNO3), with methyl thiocyanate as an infrared vibrational probe molecule, using two-dimensional infrared spectroscopy (2D IR), nuclear magnetic resonance (NMR) spectroscopy, and viscometry. The 2D IR, NMR, and viscosity results show that LiNO2 exhibits longer correlation times, lower diffusivity, and nearly 4 times greater viscosity compared to those of the other lithium salt solutions of the same concentration, suggesting that nitrite anions may strongly facilitate structure formation via strengthening water-ion network interactions, directly impacting bulk solution properties at sufficiently high concentrations. Additionally, the LiNO2 and LiNO3 solutions show significantly weakened chemical interactions between the lithium cations and the methyl thiocyanate when compared with those of the lithium halide salts.

3.
Science ; 383(6687): 1118-1122, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38359104

ABSTRACT

Attosecond-pump/attosecond-probe experiments have long been sought as the most straightforward method for observing electron dynamics in real time. Although there has been much success with overlapped near-infrared femtosecond and extreme ultraviolet attosecond pulses combined with theory, true attosecond-pump/attosecond-probe experiments have been limited. We used a synchronized attosecond x-ray pulse pair from an x-ray free-electron laser to study the electronic response to valence ionization in liquid water through all x-ray attosecond transient absorption spectroscopy (AX-ATAS). Our analysis showed that the AX-ATAS response is confined to the subfemtosecond timescale, eliminating any hydrogen atom motion and demonstrating experimentally that the 1b1 splitting in the x-ray emission spectrum is related to dynamics and is not evidence of two structural motifs in ambient liquid water.

4.
Chem Commun (Camb) ; 59(97): 14407-14410, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37975198

ABSTRACT

Predicting the behavior of oxyanions in radioactive waste stored at the Department of Energy legacy nuclear sites requires the development of novel analytical methods. This work demonstrates 15N pulsed field gradient nuclear magnetic resonance spectroscopy to quantify the diffusivity of nitrite. Experimental results, supported by molecular dynamics simulations, indicate that the diffusivity of free hydrated nitrite exceeds that of free hydrated sodium despite the greater hydrodynamic radius of nitrite. Investigations are underway to understand how the compositional and dynamical heterogeneities of the ion networks at high concentrations affect rheological and transport properties.

5.
Chem Commun (Camb) ; 59(69): 10400-10403, 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37551780

ABSTRACT

Understanding multiple lengthscale correlations in the pair distribution functions (PDFs) of aq. electrolytes is a persistent challenge. Here, the coordination chemistry of polyoxoanions supports an ion-network of cation-coordination polyhedra in NaNO3(aq) and NaNO2(aq) that induce long-range solution structure. Oxygen correlations associated with Na+-coordination polyhedra have two characteristics lengthscales; 3.5-5.5 Å and 5.5-7.5 Å, the latter solely associated oligomers. The PDF contraction between 5.5-7.5 Å observed in many electrolytes is attributed to the distinct O⋯O correlation found in dimers and dimer subunits within oligomers.

6.
J Hazard Mater ; 459: 132165, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37531768

ABSTRACT

Mechanism of hexavalent chromium removal (Cr(VI) as CrO42-) by the weak-base ion exchange (IX) resin ResinTech® SIR-700-HP (SIR-700) from simulated groundwater is assessed in the presence of radioactive contaminants iodine-129 (as IO3-), uranium (U as uranyl UO22+), and technetium-99 (as TcO4-), and common environmental anions sulfate (SO42-) and chloride (Cl-). Batch tests using the acid sulfate form of SIR-700 demonstrated Cr(VI) and U(VI) removal exceeded 97%, except in the presence of high SO42- concentrations (536 mg/L) where Cr(VI) and U(VI) removal decreased to ≥ 80%. However, Cr(VI) removal notably improved with co-mingled U(VI) that complexes with SO42- at the protonated amine sites. These U-SO42- complexes are integral to U(VI) removal, as confirmed by the decrease in U(VI) removal (<40%) when the acid chloride form of SIR-700 was used instead. Solid phase characterization revealed that CrO42- is removed by IX with SO42- complexes and/or reduced to amorphous Cr(III)(OH)3 at secondary alcohol sites. Tc(VII)O4- and I(V)O3- also undergo chemical reduction, following a similar removal mechanism. Oxyanion removal preference is determined by the anion reduction potential (CrO42->TcO4->IO3-), geometry, and charge density. For these reasons, 39% and 69% of TcO4- and 17% and 39% of IO3- are removed in the presence and absence of Cr(VI), respectively.

7.
J Chem Phys ; 158(22)2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37306956

ABSTRACT

Ultraviolet (UV) photolysis of nitrite ions (NO2-) in aqueous solutions produces a suite of radicals, viz., NO·, O-, ·OH, and ·NO2. The O- and NO· radicals are initially formed from the dissociation of photoexcited NO2-. The O- radical undergoes reversible proton transfer with water to generate ·OH. Both ·OH and O- oxidize the NO2- to ·NO2 radicals. The reactions of ·OH occur at solution diffusion limits, which are influenced by the nature of the dissolved cations and anions. Here, we systematically varied the alkali metal cation, spanning the range from strongly to weakly hydrating ions, and measured the production of NO·, ·OH, and ·NO2 radicals during UV photolysis of alkaline nitrite solutions using electron paramagnetic resonance spectroscopy with nitromethane spin trapping. Comparing the data for the different alkali cations revealed that the nature of the cation had a significant effect on production of all three radical species. Radical production was inhibited in solutions with high charge density cations, e.g., lithium, and promoted in solutions containing low charge density cations, e.g., cesium. Through complementary investigations with multinuclear single pulse direct excitation nuclear magnetic resonance (NMR) spectroscopy and pulsed field gradient NMR diffusometry, cation-controlled solution structures and extent of NO2- solvation were determined to alter the initial yields of ·NO and ·OH radicals as well as alter the reactivity of NO2- toward ·OH, impacting the production of ·NO2. The implications of these results for the retrieval and processing of low-water, highly alkaline solutions that comprise legacy radioactive waste are discussed.

8.
J Colloid Interface Sci ; 637: 326-339, 2023 May.
Article in English | MEDLINE | ID: mdl-36706728

ABSTRACT

HYPOTHESIS: The precipitation and dissolution of aluminum-bearing mineral phases in aqueous systems often proceed via changes in both aluminum coordination number and connectivity, complicating molecular-scale interpretation of the transformation mechanism. Here, the thermally induced transformation of crystalline sodium aluminum salt hydrate, a phase comprised of monomeric octahedrally coordinated aluminate which is of relevance to industrial aluminum processing, has been studied. Because intermediate aluminum coordination states during melting have not previously been detected, it is hypothesized that the transition to lower coordinated aluminum ions occurs within ahighly disordered quasi-two-dimensional phase at the solid-solution interface. EXPERIMENTS AND SIMULATIONS: In situ X-ray diffraction (XRD), Raman and27Al nuclear magnetic resonance (NMR) spectroscopy were used to monitor the melting transition of nonasodium aluminate hydrate (NSA, Na9[Al(OH)6]2·3(OH)·6H2O). A mechanistic interpretation was developed based on complementary classical molecular dynamics (CMD) simulations including enhanced sampling. A reactive forcefield was developed to bridge speciation in the solution and in the solid phase. FINDINGS: In contrast to classical dissolution, aluminum coordination change proceeds through a dynamically stabilized ensemble of intermediate states in a disordered layer at the solid-solution interface. In both melting and dissolution of NSA, octahedral, monomeric aluminum transition through an intermediate of pentahedral coordination. The intermediate dehydroxylates to form tetrahedral aluminate (Al(OH)4-) in the liquid phase. This coordination change is concomitant with a breaking of the ionic aluminate-sodium ionlinkages. The solution phase Al(OH)4- ions subsequently polymerize into polynuclear aluminate ions. However, there are some differences between bulk melting and interfacial dissolution, with the onset of the surface-controlled process occurring at a lower temperature (∼30 °C) and the coordination change taking place more gradually as a function of temperature. This work to determine the local structure and dynamics of aluminum in the disordered layer provides a new basis to understand mechanisms controlling aluminum phase transformations in highly alkaline solutions.

9.
ACS Appl Mater Interfaces ; 14(16): 18439-18452, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35412785

ABSTRACT

This study evaluated zeolite-based sorbents for iodine gas [I2(g)] capture. Based on the framework structures and porosities, five zeolites, including two faujasite (FAU), one ZSM-5 (MFI), one mesoMFI, one ZSM-22 (TON), as well as two mesoporous materials, were evaluated for I2(g) capture at room temperature and 150 °C in an iodine-saturated environment. From these preliminary studies, the three best-performing zeolites were ion-exchanged with Ag+ and evaluated for I2(g) capture under similar conditions. Energy-dispersive X-ray spectroscopy data suggest that Ag-FAU frameworks were the materials with the highest capacity for I2(g) in this study, showing ∼3× higher adsorption compared to Ag-mordenite (Ag-MOR) at room temperature, but X-ray diffraction measurements show that the faujasite structure collapsed during the adsorption studies because of dealumination. The Ag-MFI zeolites are decent sorbents in real-life applications, showing both good sorption capacities and higher stability. In-depth analyses and characterizations, including synchrotron X-ray absorption spectroscopy, revealed the influence of structural and chemical properties of zeolites on the performance for iodine adsorption from the gas phase.

10.
Inorg Chem ; 60(21): 16223-16232, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34644061

ABSTRACT

Aluminate salts precipitated from caustic alkaline solutions exhibit a correlation between the anionic speciation and the identity of the alkali cation in the precipitate, with the aluminate ions occurring either in monomeric (Al(OH)4-) or dimeric (Al2O(OH)62-) forms. The origin of this correlation is poorly understood as are the roles that oligomeric aluminate species play in determining the solution structure, prenucleation clusters, and precipitation pathways. Characterization of aluminate solution speciation with vibrational spectroscopy results in spectra that are difficult to interpret because the ions access a diverse and dynamic configurational space. To investigate the Al(OH)4- and Al2O(OH)62- anions within a well-defined crystal lattice, inelastic neutron scattering (INS) and Raman spectroscopic data were collected and simulated by density functional theory for K2[Al2O(OH)6], Rb2[Al2O(OH)6], and Cs[Al(OH) 4]·2H2O. These structures capture archetypal solution aluminate species: the first two salts contain dimeric Al2O(OH)62- anions, while the third contains the monomeric Al(OH)4- anion. Comparisons were made to the INS and Raman spectra of sodium aluminate solutions frozen in a glassy state. In contrast to solution systems, the crystal lattice of the salts results in well-defined vibrations and associated resolved bands in the INS spectra. The use of a theory-guided analysis of the INS of this solid alkaline aluminate series revealed that differences were related to the nature of the hydrogen-bonding network and showed that INS is a sensitive probe of the degree of completeness and strength of the bond network in hydrogen-bonded materials. Results suggest that the ionic size may explain cation-specific differences in crystallization pathways in alkaline aluminate salts.

11.
Phys Chem Chem Phys ; 23(1): 112-122, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33305779

ABSTRACT

Nitrite (NO2-) is a prevalent nitrogen oxyanion in environmental and industrial processes, but its behavior in solution, including ion pair formation, is complex. This solution phase complexity impacts industries such as nuclear waste treatment, where NO2- significantly affects the solubility of other constituents present in sodium hydroxide (NaOH)-rich nuclear waste. This work provides molecular scale information into sodium nitrite (NaNO2) and NaOH ion-pairing processes to provide a physical basis for later development of thermodynamic models. Solubility isotherms of NaNO2 in aqueous mixtures with NaOH and total alkalinity were also measured. Spectroscopic characterization of these solutions utilized high-field nuclear magnetic resonance spectroscopy (NMR) and Raman spectroscopy, with additional solution structure detailed by X-ray total scattering pairwise distribution function analysis (X-ray PDF). Despite the NO2- deformation Raman band's insensitivity to added NaOH in saturated NaNO2 solutions, 23Na and 15N NMR studies indicated the Na+ and NO2- chemical environments change likely due to ion pairing. The ion pairing correlates with a decrease in diffusion coefficient of solution species as measured by pulsed field gradient 23Na and 1H NMR. Two-dimensional correlation analyses of the 2800-4000 cm-1 Raman region and X-ray PDF indicated that saturated NaNO2 and NaOH mixtures disrupt the hydrogen network of water into a new structure where the length of the OO correlations is contracted relative to the typical H2O structure. Beyond describing the solubility of NaNO2 in a multicomponent electrolyte mixture, these results also indicate that nitrite exhibits greater ion pairing in mixtures of concentrated NaNO2 and NaOH than in comparable solutions with only NaNO2.

SELECTION OF CITATIONS
SEARCH DETAIL