Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
J Mol Biol ; 436(6): 168455, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38272438

ABSTRACT

Knots are very common in polymers, including DNA and protein molecules. Yet, no genuine knot has been identified in natural RNA molecules to date. Upon re-examining experimentally determined RNA 3D structures, we discovered a trefoil knot 31, the most basic non-trivial knot, in the RydC RNA. This knotted RNA is a member of a small family of short bacterial RNAs, whose secondary structure is characterized by an H-type pseudoknot. Molecular dynamics simulations suggest a folding pathway of the RydC RNA that starts with a native twisted loop. Based on sequence analyses and computational RNA 3D structure predictions, we postulate that this trefoil knot is a conserved feature of all RydC-related RNAs. The first discovery of a knot in a natural RNA molecule introduces a novel perspective on RNA 3D structure formation and on fundamental research on the relationship between function and spatial structure of biopolymers.


Subject(s)
RNA Folding , RNA , Molecular Dynamics Simulation , RNA/chemistry , RNA/genetics
2.
Nucleic Acids Res ; 51(W1): W251-W262, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37207343

ABSTRACT

Despite recent advances in research, the mechanism of Alzheimer's disease is not fully understood yet. Understanding the process of cleavage and then trimming of peptide substrates, can help selectively block γ-secretase (GS) to stop overproduction of the amyloidogenic products. Our GS-SMD server (https://gs-smd.biomodellab.eu/) allows cleaving and unfolding of all currently known GS substrates (more than 170 peptide substrates). The substrate structure is obtained by threading of the substrate sequence into the known structure of GS complex. The simulations are performed in an implicit water-membrane environment so they are performed rather quickly, 2-6 h per job, depending on the mode of calculations (part of GS complex or the whole structure). It is also possible to introduce mutations to the substrate and GS and pull any part of the substrate in any direction using the steered molecular dynamics (SMD) simulations with constant velocity. The obtained trajectories are visualized and analyzed in the interactive way. One can also compare multiple simulations using the interaction frequency analysis. GS-SMD server can be useful for revealing mechanisms of substrate unfolding and role of mutations in this process.


Subject(s)
Amyloid Precursor Protein Secretases , Molecular Dynamics Simulation , Humans , Alzheimer Disease/genetics , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/metabolism , Catalytic Domain , Peptides/genetics
3.
J Chem Theory Comput ; 18(9): 5145-5156, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35998323

ABSTRACT

The presented methodology is based on coarse-grained representation of biomolecules in implicit environments and is designed for the molecular dynamics simulations of membrane proteins and their complexes. The membrane proteins are not only found in the cell membrane but also in all membranous compartments of the cell: Golgi apparatus, mitochondria, endosomes and lysosomes, and they usually form large complexes. To investigate such systems the methodology is proposed based on two independent approaches combining the coarse-grained MARTINI model for proteins and the effective energy function to mimic the water/membrane environments. The latter is based on the implicit environment developed for all-atom simulations in the IMM1 method. The force field solvation parameters for COGRIMEN were initially calculated from IMM1 all-atom parameters and then optimized using Genetic Algorithms. The new methodology was tested on membrane proteins, their complexes and oligomers. COGRIMEN method is implemented as a patch for NAMD program and can be useful for fast and brief studies of large membrane protein complexes.


Subject(s)
Membrane Proteins , Molecular Dynamics Simulation , Cell Membrane
4.
Nucleic Acids Res ; 49(W1): W247-W256, 2021 07 02.
Article in English | MEDLINE | ID: mdl-34060630

ABSTRACT

GPCRsignal (https://gpcrsignal.biomodellab.eu/) is a webserver devoted to signaling complexes of G-protein-coupled receptors (GPCRs). The recent improvement in cryo-electron microscopy resulted in the determination of a large number of high-resolution structures of GPCRs bound to their effector proteins: G proteins or arrestins. Analyzing the interfaces between receptor and an effector protein is of high importance since a selection of proper G protein or specific conformation of arrestin leads to changes of signaling that can significantly affect action of drugs. GPCRsignal provides a possibility of running molecular dynamics simulations of all currently available GPCR-effector protein complexes for curated structures: wild-type, with crystal/cryo-EM mutations, or with mutations introduced by the user. The simulations are performed in an implicit water-membrane environment, so they are rather fast. User can run several simulations to obtain statistically valid results. The simulations can be analyzed separately using dynamic FlarePlots for particular types of interactions. One can also compare groups of simulations in Interaction frequency analysis as HeatMaps and also in interaction frequency difference analysis as sticks, linking the interacting residues, of different color and size proportional to differences in contact frequencies.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Signal Transduction , Software , Arrestins/chemistry , Cryoelectron Microscopy , Heterotrimeric GTP-Binding Proteins/chemistry , Molecular Dynamics Simulation , Mutation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism
5.
Methods Mol Biol ; 2268: 305-321, 2021.
Article in English | MEDLINE | ID: mdl-34085277

ABSTRACT

Homology modeling methods are commonly used for quick and precise construction of a desired protein or its mutant using protein templates, which were determined by crystallography, cryo-EM, or NMR. Due to the increasing number of such structures, the obtained models are precise even in the case of small similarity between sequences of template and modeled proteins. The reason for that is a high evolutionary conservation in the structure regions responsible for keeping the function of proteins. This is also the case for G protein-coupled receptors (GPCRs), which constitute the largest family of membrane receptors with nearly 800 proteins. The GPCRM web service ( https://gpcrm.biomodellab.eu/ ) was set up for the nearly automatic generation of high-quality structures of modeled GPCRs. The three possible paths: "High similarity," "Quick path," and "Long path" allow the user to choose between a fast but less reliable path, up to more reliable but longer procedures. In the Advanced mode the service allows for user modifications including selection of template(s) and a manual adjustment of the sequence alignment.


Subject(s)
Internet , Receptors, G-Protein-Coupled/chemistry , Software , Amino Acid Sequence , Humans , Molecular Dynamics Simulation , Protein Conformation , Sequence Homology
6.
Phys Rev Lett ; 123(13): 138102, 2019 Sep 27.
Article in English | MEDLINE | ID: mdl-31697559

ABSTRACT

The supercoiling motif is the most complex type of nontrivial topology found in proteins with at least one disulfide bond and, to the best of our knowledge, it has not been studied before. We show that a protein from extremophilic species with such a motif can fold; however, the supercoiling changes a smooth landscape observed in reduced conditions into a two-state folding process in the oxidative conditions, with a deep intermediate state. The protein takes advantage of the hairpinlike motif to overcome the topological barrier and thus to supercoil. We find that the depth of the supercoiling motif, i.e., the length of the threaded terminus, has a crucial impact on the folding rates of the studied protein. We show that fluctuations of the minimal surface area can be used to measure local stability, and we find that supercoiling introduces stability into the protein. We suggest that the supercoiling motif enables the studied protein to live in physically extreme conditions, which are detrimental to most life on Earth.


Subject(s)
Models, Chemical , Proteins/chemistry , Kinetics , Models, Molecular , Protein Conformation , Protein Folding , Thermodynamics
7.
Sci Rep ; 9(1): 11753, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31409805

ABSTRACT

Sophisticated methods for mapping chromatin contacts enable to generate data of the genome structure that provide deep insights into the formation of chromatin interactions within cell nuclei. Due to the recent progress in this field, three-dimensional genomic structures of individual haploid mouse embryonic stem cells have been determined. Here, we analyze these data (8 cells) and determine comprehensive landscape of entanglements between interphase chromosomes. We find a significant number of stable links formed by chromosome pairs. Some links are even conserved between cells. Moreover, examples of stable multiple links, with at least three chromosomes engaged, are also identified. Types of links and their location along chromosomes are determined based on computations of HOMFLY-PT polynomials and Gauss Linking Numbers. Furthermore, stability of links is studied between different models, cells, and based on relaxation simulations of the genomic structure in a simplified structure-based representation. Identified links suggest that small fraction of chromosomes are entangled not only locally. How topoisomerases engineer such configurations remains an open question. Furthermore, presented methods can be used as a quantitative assessment - descriptor - to distinguish the quality of modeled data.


Subject(s)
Chromosome Mapping , Algorithms , Animals , Genome , Humans , Interphase , Mice
8.
PLoS One ; 14(1): e0210705, 2019.
Article in English | MEDLINE | ID: mdl-30682072

ABSTRACT

The prolonged use of many currently available drugs results in the severe side effect of the disruption of glucose metabolism leading to type 2 diabetes mellitus (T2DM. Gut hormone receptors including glucagon receptor (GCGR) and the incretin hormone receptors: glucagon-like peptide 1 receptor (GLP1R) and gastric inhibitory polypeptide receptor (GIPR) are important drug targets for the treatment of T2DM, as they play roles in the regulation of glucose and insulin levels and of food intake. In this study, we hypothesized that we could compensate for the negative influences of specific drugs on glucose metabolism by the positive incretin effect enhanced by the off-target interactions with incretin GPCR receptors. As a test case, we chose to examine beta-blockers because beta-adrenergic receptors and incretin receptors are expressed in a similar location, making off-target interactions possible. The binding affinity of drugs for incretin receptors was approximated by using two docking scoring functions of Autodock VINA (GUT-DOCK) and Glide (Schrodinger) and juxtaposing these values with the medical information on drug-induced T2DM. We observed that beta-blockers with the highest theoretical binding affinities for gut hormone receptors were reported as the least harmful to glucose homeostasis in clinical trials. Notably, a recently discovered beta-blocker compound 15 ([4-((2S)-3-(((S)-3-(3-bromophenyl)-1-(methylamino)-1-oxopropan-2-yl)amino)-2-(2-cyclohexyl-2-phenylacetamido)-3-oxopropyl)benzamide was among the top-scoring drugs, potentially supporting its use in the treatment of hypertension in diabetic patients. Our recently developed web service GUT-DOCK (gut-dock.miningmembrane.com) allows for the execution of similar studies for any drug-like molecule. Specifically, users can compute the binding affinities for various class B GPCRs, gut hormone receptors, VIPR1 and PAC1R.


Subject(s)
Adrenergic beta-Antagonists/adverse effects , Diabetes Mellitus, Type 2/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Molecular Dynamics Simulation , Receptors, Glucagon/metabolism
9.
PLoS One ; 14(1): e0208892, 2019.
Article in English | MEDLINE | ID: mdl-30650080

ABSTRACT

A disturbance of glucose homeostasis leading to type 2 diabetes mellitus (T2DM) is one of the severe side effects that may occur during a prolonged use of many drugs currently available on the market. In this manuscript we describe the most common cases of drug-induced T2DM, discuss available pharmacotherapies and propose new ones. Among various pharmacotherapies of T2DM, incretin therapies have recently focused attention due to the newly determined crystal structure of incretin hormone receptor GLP1R. Incretin hormone receptors: GLP1R and GIPR together with the glucagon receptor GCGR regulate food intake and insulin and glucose secretion. Our study showed that incretin hormone receptors, named also gut hormone receptors as they are expressed in the gastrointestinal tract, could potentially act as unintended targets (off-targets) for orally administrated drugs. Such off-target interactions, depending on their effect on the receptor (stimulation or inhibition), could be beneficial, like in the case of incretin mimetics, or unwanted if they cause, e.g., decreased insulin secretion. In this in silico study we examined which well-known pharmaceuticals could potentially interact with gut hormone receptors in the off-target way. We observed that drugs with the strongest binding affinity for gut hormone receptors were also reported in the medical information resources as the least disturbing the glucose homeostasis among all drugs in their class. We suggested that those strongly binding molecules could potentially stimulate GIPR and GLP1R and/or inhibit GCGR which could lead to increased insulin secretion and decreased hepatic glucose production. Such positive effect on the glucose homeostasis could compensate for other, adverse effects of pharmacotherapy which lead to drug-induced T2DM. In addition, we also described several top hits as potential substitutes of peptidic incretin mimetics which were discovered in the drug repositioning screen using gut hormone receptors structures against the ZINC15 compounds subset.


Subject(s)
Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/metabolism , Animals , Gastric Inhibitory Polypeptide/chemistry , Gastric Inhibitory Polypeptide/metabolism , Glucagon-Like Peptide-1 Receptor/chemistry , Glucagon-Like Peptide-1 Receptor/metabolism , Humans , Protein Structure, Secondary , Receptors, Gastrointestinal Hormone/chemistry , Receptors, Gastrointestinal Hormone/metabolism , Receptors, Glucagon/chemistry , Receptors, Glucagon/metabolism
10.
J Phys Chem B ; 122(49): 11616-11625, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30198720

ABSTRACT

The mechanism of folding of deeply knotted proteins into their native structure is still not understood. Current thinking about protein folding is dominated by the Anfinsen dogma, stating that the structure of the folded proteins is uniquely dictated by the amino acid sequence of a given protein and that the folding is driven uniquely by the energy gained from interactions between amino acids that contact each other in the native structure of the protein. The role of ribosomes in protein folding was only seen as permitting the folding to progress from the N-terminal part of nascent protein chains. We propose here that ribosomes can participate actively in the folding of knotted proteins by actively threading nascent chains emerging from the ribosome exit channels through loops formed by a synthesized earlier portion of the same protein. Our simulations of folding of deeply knotted protein Tp0624 positively verify the proposed ribosome-driven active threading mechanism leading to the formation of deeply knotted proteins.


Subject(s)
Peptides/chemistry , Proteins/chemistry , Ribosomes/chemistry , Models, Molecular , Protein Folding
11.
Nucleic Acids Res ; 46(W1): W17-W24, 2018 07 02.
Article in English | MEDLINE | ID: mdl-29905836

ABSTRACT

The KnotGenome server enables the topological analysis of chromosome model data using three-dimensional coordinate files of chromosomes as input. In particular, it detects prime and composite knots in single chromosomes, and links between chromosomes. The knotting complexity of the chromosome is presented in the form of a matrix diagram that reveals the knot type of the entire polynucleotide chain and of each of its subchains. Links are determined by means of the Gaussian linking integral and the HOMFLY-PT polynomial. Entangled chromosomes are presented graphically in an intuitive way. It is also possible to relax structure with short molecular dynamics runs before the analysis. KnotGenome is freely available at http://knotgenom.cent.uw.edu.pl/.


Subject(s)
Chromosomes/ultrastructure , Computational Biology/trends , Internet , Software , Algorithms , Chromosomes/genetics , Molecular Dynamics Simulation , Polynucleotides/chemistry , Polynucleotides/genetics , Protein Conformation
12.
PLoS Comput Biol ; 14(3): e1005970, 2018 03.
Article in English | MEDLINE | ID: mdl-29547629

ABSTRACT

The folding of proteins with a complex knot is still an unresolved question. Based on representative members of Ubiquitin C-terminal Hydrolases (UCHs) that contain the 52 knot in the native state, we explain how UCHs are able to unfold and refold in vitro reversibly within the structure-based model. In particular, we identify two, topologically different folding/unfolding pathways and corroborate our results with experiment, recreating the chevron plot. We show that confinement effect of chaperonin or weak crowding greatly facilitates folding, simultaneously slowing down the unfolding process of UCHs, compared with bulk conditions. Finally, we analyze the existence of knots in the denaturated state of UCHs. The results of the work show that the crowded environment of the cell should have a positive effect on the kinetics of complex knotted proteins, especially when proteins with deeper knots are found in this family.


Subject(s)
Chaperonins/chemistry , Chaperonins/metabolism , Protein Conformation , Protein Folding , Computational Biology , Protein Denaturation , Proteins , Ubiquitin Thiolesterase/chemistry , Ubiquitin Thiolesterase/metabolism
13.
PLoS One ; 12(5): e0176744, 2017.
Article in English | MEDLINE | ID: mdl-28489858

ABSTRACT

Molecular dynamics simulations are used to explore the effects of chaperonin-like cages on knotted proteins with very low sequence similarity, different depths of a knot but with a similar fold, and the same type of topology. The investigated proteins are VirC2, DndE and MJ0366 with two depths of a knot. A comprehensive picture how encapsulation influences folding rates is provided based on the analysis of different cage sizes and temperature conditions. Neither of these two effects with regard to knotted proteins has been studied by means of molecular dynamics simulations with coarse-grained structure-based models before. We show that encapsulation in a chaperonin is sufficient to self-tie and untie small knotted proteins (VirC2, DndE), for which the equilibrium process is not accessible in the bulk solvent. Furthermore, we find that encapsulation reduces backtracking that arises from the destabilisation of nucleation sites, smoothing the free energy landscape. However, this effect can also be coupled with temperature rise. Encapsulation facilitates knotting at the early stage of folding and can enhance an alternative folding route. Comparison to unknotted proteins with the same fold shows directly how encapsulation influences the free energy landscape. In addition, we find that as the size of the cage decreases, folding times increase almost exponentially in a certain range of cage sizes, in accordance with confinement theory and experimental data for unknotted proteins.


Subject(s)
Chaperonins/metabolism , Models, Molecular , Molecular Dynamics Simulation , Protein Folding , Temperature
14.
Eur J Med Chem ; 136: 543-547, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28535470

ABSTRACT

Upregulation of interleukin 15 (IL-15) contributes directly i.a. to the development of inflammatory and autoimmune diseases. Selective blockade of IL-15 aimed to treat rheumatoid arthritis, psoriasis and other IL-15-related disorders has been recognized as an efficient therapeutic method. The aim of the study was to identify small molecules which would interact with IL-15 or its receptor IL-15Rα and inhibit the cytokine's activity. Based on the crystal structure of IL-15Rα·IL-15, we created pharmacophore models to screen the ZINC database of chemical compounds for potential IL-15 and IL-15Rα inhibitors. Twenty compounds with the highest predicted binding affinities were subjected to in vitro analysis using human peripheral blood mononuclear cells to validate in silico data. Twelve molecules efficiently reduced IL-15-dependent TNF-α and IL-17 synthesis. Among these, cefazolin - a safe first-generation cephalosporin antibiotic - holds the highest promise for IL-15-directed therapeutic applications.


Subject(s)
Interleukin-15/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
15.
J Chem Phys ; 130(12): 124906, 2009 Mar 28.
Article in English | MEDLINE | ID: mdl-19334888

ABSTRACT

We incorporate hydrodynamic interactions (HIs) in a coarse-grained and structure-based model of proteins by employing the Rotne-Prager hydrodynamic tensor. We study several small proteins and demonstrate that HIs facilitate folding. We also study HIV-1 protease and show that HIs make the flap closing dynamics faster. The HIs are found to affect time correlation functions in the vicinity of the native state even though they have no impact on same time characteristics of the structure fluctuations around the native state.


Subject(s)
Models, Molecular , Protein Folding , Proteins/chemistry , HIV Protease/chemistry , HIV Protease/metabolism , Kinetics , Movement , Protein Conformation , Proteins/metabolism
16.
J Phys Condens Matter ; 21(47): 474221, 2009 Nov 25.
Article in English | MEDLINE | ID: mdl-21832500

ABSTRACT

Three coarse-grained molecular dynamics models of the double-stranded DNA are proposed and compared in the context of single molecule mechanical manipulation such as twisting and various schemes of stretching-unzipping, shearing, two-strand stretching and stretching of only one strand. The models differ in the number of effective beads (between two and five) representing each nucleotide. They all show similar behaviour, but the bigger the resolution, the more details in the force patterns. The models incorporate the effective Lennard-Jones potentials in the couplings between two strands and harmonic potentials to describe the structure of a single strand. The force patterns are shown to depend on the sequence studied. In particular, both shearing and unzipping for an all-AT sequence lead to lower forces than for an all-CG sequence. The unzipping patterns and the corresponding scenario diagrams for the contact rupture events are found to reflect the sequential information if the temperature is moderate and initial transients are discarded. The derived torque-force phase diagram is found to be qualitatively consistent with experiments and all-atom simulations.

SELECTION OF CITATIONS
SEARCH DETAIL