Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9457, 2024 04 24.
Article in English | MEDLINE | ID: mdl-38658627

ABSTRACT

Increased use of therapeutic monoclonal antibodies and the relatively high manufacturing costs fuel the need for more efficient production methods. Here we introduce a novel, fast, robust, and safe isolation platform for screening and isolating antibody-producing cell lines using a nanowell chip and an innovative single-cell isolation method. An anti-Her2 antibody producing CHO cell pool was used as a model. The platform; (1) Assures the single-cell origin of the production clone, (2) Detects the antibody production of individual cells and (3) Isolates and expands the individual cells based on their antibody production. Using the nanowell platform we demonstrated an 1.8-4.5 increase in anti-Her2 production by CHO cells that were screened and isolated with the nanowell platform compared to CHO cells that were not screened. This increase was also shown in Fed-Batch cultures where selected high production clones showed titers of 19-100 mg/L on harvest day, while the low producer cells did not show any detectable anti-Her2 IgG production. The screening of thousands of single cells is performed under sterile conditions and the individual cells were cultured in buffers and reagents without animal components. The time required from seeding a single cell and measuring the antibody production to fully expanded clones with increased Her-2 production was 4-6 weeks.


Subject(s)
Antibodies, Monoclonal , Cricetulus , Receptor, ErbB-2 , CHO Cells , Animals , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/immunology , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/biosynthesis , Antibody-Producing Cells/immunology , Antibody-Producing Cells/metabolism , Humans , Cell Separation/methods , Single-Cell Analysis/methods
2.
Front Med (Lausanne) ; 10: 1152077, 2023.
Article in English | MEDLINE | ID: mdl-37324141

ABSTRACT

Introduction: FindMyApps is a tablet-based eHealth intervention, designed to improve social health in people with mild dementia or mild cognitive impairment. Methods: FindMyApps has been subject to a randomized controlled trial (RCT), Netherlands Trial Register NL8157. Following UK Medical Research Council guidance, a mixed methods process evaluation was conducted. The goal was to investigate the quantity and quality of tablet use during the RCT, and which context, implementation, and mechanisms of impact (usability, learnability and adoption) factors might have influenced this. For the RCT, 150 community dwelling people with dementia and their caregivers were recruited in the Netherlands. For the process evaluation, tablet-use data were collected by proxy-report instrument from all participants' caregivers, FindMyApps app-use data were registered using analytics software among all experimental arm participants, and semi-structured interviews (SSIs) were conducted with a purposively selected sample of participant-caregiver dyads. Quantitative data were summarized and between group differences were analyzed, and qualitative data underwent thematic analysis. Results: There was a trend for experimental arm participants to download more apps, but there were no statistically significant differences between experimental and control arm participants regarding quantity of tablet use. Qualitative data revealed that experimental arm participants experienced the intervention as easier to use and learn, and more useful and fun than control arm participants. Adoption of tablet app use was lower than anticipated in both arms. Conclusions: A number of context, implementation and mechanism of impact factors were identified, which might explain these results and may inform interpretation of the pending RCT main effect results. FindMyApps seems to have had more impact on the quality than quantity of home tablet use.

SELECTION OF CITATIONS
SEARCH DETAIL
...