Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Eng Educ ; 4(1): 73-86, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38752167

ABSTRACT

Mechanobiology is an interdisciplinary field that aims to understand how physical forces impact biological systems. Enhancing our knowledge of mechanobiology has become increasingly important for understanding human disease and developing novel therapeutics. There is a societal need to teach diverse students principles of mechanobiology so that we may collectively expand our knowledge of this subject and apply new principles to improving human health. Toward this goal, we designed, implemented, and evaluated a hands-on, inquiry-based learning (IBL) module to teach students principles of cell-biomaterial interactions. This module was designed to be hosted in two 3-h sessions, over two consecutive days. During this time, students learned how to synthesize and mechanically test biomaterials, culture bacteria cells, and assess effects of matrix stiffness on bacteria cell proliferation. Among the 73 students who registered to participate in our IBL mechanobiology module, 40 students completed both days and participated in this study. A vast majority of the participants were considered underrepresented minority (URM) students based on race/ethnicity. Using pre/post-tests, we found that students experienced significant learning gains of 33 percentage points from completing our IBL mechanobiology module. In addition to gaining knowledge of mechanobiology, validated pre/post-surveys showed that students also experienced significant improvements in scientific literacy. Instructors may use this module as described, increase the complexity for an undergraduate classroom assignment, or make the module less complex for K-12 outreach. As presented, this IBL mechanobiology module effectively teaches diverse students principles of mechanobiology and scientific inquiry. Deploying this module, and similar IBL modules, may help advance the next generation of mechanobiologists.

2.
Dev Cell ; 59(2): 211-227.e5, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38141609

ABSTRACT

Fetal bone development occurs through the conversion of avascular cartilage to vascularized bone at the growth plate. This requires coordinated mobilization of osteoblast precursors with blood vessels. In adult bone, vessel-adjacent osteoblast precursors are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Here, we show that the mechanoresponsive transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) spatially couple osteoblast precursor mobilization to angiogenesis, regulate vascular morphogenesis to control cartilage remodeling, and mediate mechanoregulation of embryonic murine osteogenesis. Mechanistically, YAP and TAZ regulate a subset of osteoblast-lineage cells, identified by single-cell RNA sequencing as vessel-associated osteoblast precursors, which regulate transcriptional programs that direct blood vessel invasion through collagen-integrin interactions and Cxcl12. Functionally, in 3D human cell co-culture, CXCL12 treatment rescues angiogenesis impaired by stromal cell YAP/TAZ depletion. Together, these data establish functions of the vessel-associated osteoblast precursors in bone development.


Subject(s)
Adaptor Proteins, Signal Transducing , Trans-Activators , Animals , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Angiogenesis , Bone Development , Morphogenesis , Osteoblasts/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , YAP-Signaling Proteins
3.
Proc Natl Acad Sci U S A ; 120(22): e2211947120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216538

ABSTRACT

Cells integrate mechanical cues to direct fate specification to maintain tissue function and homeostasis. While disruption of these cues is known to lead to aberrant cell behavior and chronic diseases, such as tendinopathies, the underlying mechanisms by which mechanical signals maintain cell function are not well understood. Here, we show using a model of tendon de-tensioning that loss of tensile cues in vivo acutely changes nuclear morphology, positioning, and expression of catabolic gene programs, resulting in subsequent weakening of the tendon. In vitro studies using paired ATAC/RNAseq demonstrate that the loss of cellular tension rapidly reduces chromatin accessibility in the vicinity of Yap/Taz genomic targets while also increasing expression of genes involved in matrix catabolism. Concordantly, the depletion of Yap/Taz elevates matrix catabolic expression. Conversely, overexpression of Yap results in a reduction of chromatin accessibility at matrix catabolic gene loci, while also reducing transcriptional levels. The overexpression of Yap not only prevents the induction of this broad catabolic program following a loss of cellular tension, but also preserves the underlying chromatin state from force-induced alterations. Taken together, these results provide novel mechanistic details by which mechanoepigenetic signals regulate tendon cell function through a Yap/Taz axis.


Subject(s)
Trans-Activators , Transcription Factors , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins , Chromatin/genetics , Chromatin/metabolism , Extracellular Matrix/genetics , Extracellular Matrix/metabolism , Homeostasis , Signal Transduction/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism , Transcriptional Coactivator with PDZ-Binding Motif Proteins/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins/metabolism
4.
bioRxiv ; 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36711590

ABSTRACT

Endochondral ossification requires coordinated mobilization of osteoblast precursors with blood vessels. During adult bone homeostasis, vessel adjacent osteoblast precursors respond to and are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Previously, we found that deletion of the mechanoresponsive transcriptional regulators, YAP and TAZ, from Osterix-expressing osteoblast precursors and their progeny caused perinatal lethality. Here, we show that embryonic YAP/TAZ signaling couples vessel-associated osteoblast precursor mobilization to angiogenesis in developing long bones. Osterix-conditional YAP/TAZ deletion impaired endochondral ossification in the primary ossification center but not intramembranous osteogenesis in the bone collar. Single-cell RNA sequencing revealed YAP/TAZ regulation of the angiogenic chemokine, Cxcl12, which was expressed uniquely in vessel-associated osteoblast precursors. YAP/TAZ signaling spatially coupled osteoblast precursors to blood vessels and regulated vascular morphogenesis and vessel barrier function. Further, YAP/TAZ signaling regulated vascular loop morphogenesis at the chondro-osseous junction to control hypertrophic growth plate remodeling. In human cells, mesenchymal stromal cell co-culture promoted 3D vascular network formation, which was impaired by stromal cell YAP/TAZ depletion, but rescued by recombinant CXCL12 treatment. Lastly, YAP and TAZ mediated mechanotransduction for load-induced osteogenesis in embryonic bone.

5.
Cell Syst ; 13(9): 724-736.e9, 2022 09 21.
Article in English | MEDLINE | ID: mdl-36057257

ABSTRACT

Identifying the chemical regulators of biological pathways is a time-consuming bottleneck in developing therapeutics and research compounds. Typically, thousands to millions of candidate small molecules are tested in target-based biochemical screens or phenotypic cell-based screens, both expensive experiments customized to each disease. Here, our uncustomized, virtual, profile-based screening approach instead identifies compounds that match to pathways based on the phenotypic information in public cell image data, created using the Cell Painting assay. Our straightforward correlation-based computational strategy retrospectively uncovered the expected, known small-molecule regulators for 32% of positive-control gene queries. In prospective, discovery mode, we efficiently identified new compounds related to three query genes and validated them in subsequent gene-relevant assays, including compounds that phenocopy or pheno-oppose YAP1 overexpression and kill a Yap1-dependent sarcoma cell line. This image-profile-based approach could replace many customized labor- and resource-intensive screens and accelerate the discovery of biologically and therapeutically useful compounds.


Subject(s)
Prospective Studies , Cell Line , Retrospective Studies
6.
J Bone Miner Res ; 36(1): 143-157, 2021 01.
Article in English | MEDLINE | ID: mdl-32835424

ABSTRACT

In response to bone fracture, periosteal progenitor cells proliferate, expand, and differentiate to form cartilage and bone in the fracture callus. These cellular functions require the coordinated activation of multiple transcriptional programs, and the transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) regulate osteochondroprogenitor activation during endochondral bone development. However, recent observations raise important distinctions between the signaling mechanisms used to control bone morphogenesis and repair. Here, we tested the hypothesis that YAP and TAZ regulate osteochondroprogenitor activation during endochondral bone fracture healing in mice. Constitutive YAP and/or TAZ deletion from Osterix-expressing cells impaired both cartilage callus formation and subsequent mineralization. However, this could be explained either by direct defects in osteochondroprogenitor differentiation after fracture or by developmental deficiencies in the progenitor cell pool before fracture. Consistent with the second possibility, we found that developmental YAP/TAZ deletion produced long bones with impaired periosteal thickness and cellularity. Therefore, to remove the contributions of developmental history, we next generated adult onset-inducible knockout mice (using Osx-CretetOff ) in which YAP and TAZ were deleted before fracture but after normal development. Adult onset-induced YAP/TAZ deletion had no effect on cartilaginous callus formation but impaired bone formation at 14 days post-fracture (dpf). Earlier, at 4 dpf, adult onset-induced YAP/TAZ deletion impaired the proliferation and expansion of osteoblast precursor cells located in the shoulder of the callus. Further, activated periosteal cells isolated from this region at 4 dpf exhibited impaired osteogenic differentiation in vitro upon YAP/TAZ deletion. Finally, confirming the effects on osteoblast function in vivo, adult onset-induced YAP/TAZ deletion impaired bone formation in the callus shoulder at 7 dpf before the initiation of endochondral ossification. Together, these data show that YAP and TAZ promote the expansion and differentiation of periosteal osteoblast precursors to accelerate bone fracture healing. © 2020 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Fractures, Bone , Osteogenesis , Animals , Bony Callus , Cell Differentiation , Mice , Osteoblasts
7.
Curr Osteoporos Rep ; 18(5): 526-540, 2020 10.
Article in English | MEDLINE | ID: mdl-32712794

ABSTRACT

PURPOSE OF REVIEW: The development of the skeleton is controlled by cellular decisions determined by the coordinated activation of multiple transcription factors. Recent evidence suggests that the transcriptional regulator proteins, Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), could have important roles in directing the activity of these transcriptional programs. However, in vitro evidence for the roles of YAP and TAZ in skeletal cells has been hopelessly contradictory. The goals of this review are to provide a cross-sectional view on the state of the field and to synthesize the available data toward a unified perspective. RECENT FINDINGS: YAP and TAZ are regulated by diverse upstream signals and interact downstream with multiple transcription factors involved in skeletal development, positioning YAP and TAZ as important signal integration nodes in an hourglass-shaped signaling pathway. Here, we provide a survey of putative transcriptional co-effectors for YAP and TAZ in skeletal cells. Synthesizing the in vitro data, we conclude that TAZ is consistently pro-osteogenic in function, while YAP can exhibit either pro- or anti-osteogenic activity depending on cell type and context. Synthesizing the in vivo data, we conclude that YAP and TAZ combinatorially promote developmental bone formation, bone matrix homeostasis, and endochondral fracture repair by regulating a variety of transcriptional programs depending on developmental stage. Here, we discuss the current understanding of the roles of the transcriptional regulators YAP and TAZ in skeletal development, and provide recommendations for continued study of molecular mechanisms, mechanotransduction, and therapeutic implications for skeletal disease.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Bone Development/genetics , Bone Matrix/metabolism , Fracture Healing/genetics , Gene Expression Regulation, Developmental , Intracellular Signaling Peptides and Proteins/genetics , Transcription Factors/genetics , Adaptor Proteins, Signal Transducing/physiology , Homeostasis/genetics , Humans , Intracellular Signaling Peptides and Proteins/physiology , Transcription Factors/physiology , Transcriptional Coactivator with PDZ-Binding Motif Proteins , YAP-Signaling Proteins
8.
J Biomed Mater Res A ; 105(9): 2429-2440, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28470671

ABSTRACT

Bone tissue engineering mandates the development of a functional scaffold that mimics the physicochemical properties of native bone. Bioglass 45S5 (BG) is a highly bioactive material known to augment bone formation and restoration. Hybrid scaffolds fabricated using collagen type I and BG resemble the organic and inorganic composition of the bone extracellular matrix and hence have been extensively investigated for bone tissue engineering applications. However, collagen-BG scaffolds developed thus far do not recapitulate the aligned structure of collagen found in native bone. In this study, an electrochemical fabrication method was employed to synthesize BG-incorporated electrochemically aligned collagen (BG-ELAC) threads that are compositionally similar to native bone. Further, aligned collagen fibrils within BG-ELAC threads mimic the anisotropic arrangement of collagen fibrils in native bone. The effect of BG incorporation on the mechanical properties and cell-mediated mineralization on ELAC threads was investigated. The results indicated that BG can be successfully incorporated within ELAC threads, without disturbing collagen fibril alignment. Further, BG incorporation significantly increased the ultimate tensile stress (UTS) and modulus of ELAC threads (p < 0.05). SBF conditioning showed extensive mineralization on BG-ELAC threads that increased over time demonstrating the bone bioactivity of BG-ELAC threads. Additionally, BG incorporation into ELAC threads resulted in increased cell proliferation (p < 0.05) and deposition of a highly dense and continuous mineralized matrix. In conclusion, incorporation of BG into ELAC threads is a viable strategy for the development of an osteoconductive material for bone tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2429-2440, 2017.


Subject(s)
Calcification, Physiologic/drug effects , Ceramics/pharmacology , Collagen/pharmacology , Electrochemistry , Mechanical Phenomena , Animals , Body Fluids/chemistry , Cattle , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Shape/drug effects , Cell Survival/drug effects , Glass , Humans , Spectrometry, X-Ray Emission , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...