Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters











Publication year range
2.
Biochim Biophys Acta Bioenerg ; 1861(8): 148213, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32335026

ABSTRACT

Mutations in NDUFS4, which encodes an accessory subunit of mitochondrial oxidative phosphorylation (OXPHOS) complex I (CI), induce Leigh syndrome (LS). LS is a poorly understood pediatric disorder featuring brain-specific anomalies and early death. To study the LS pathomechanism, we here compared OXPHOS proteomes between various Ndufs4-/- mouse tissues. Ndufs4-/- animals displayed significantly lower CI subunit levels in brain/diaphragm relative to other tissues (liver/heart/kidney/skeletal muscle), whereas other OXPHOS subunit levels were not reduced. Absence of NDUFS4 induced near complete absence of the NDUFA12 accessory subunit, a 50% reduction in other CI subunit levels, and an increase in specific CI assembly factors. Among the latter, NDUFAF2 was most highly increased. Regarding NDUFS4, NDUFA12 and NDUFAF2, identical results were obtained in Ndufs4-/- mouse embryonic fibroblasts (MEFs) and NDUFS4-mutated LS patient cells. Ndufs4-/- MEFs contained active CI in situ but blue-native-PAGE highlighted that NDUFAF2 attached to an inactive CI subcomplex (CI-830) and inactive assemblies of higher MW. In NDUFA12-mutated LS patient cells, NDUFA12 absence did not reduce NDUFS4 levels but triggered NDUFAF2 association to active CI. BN-PAGE revealed no such association in LS patient fibroblasts with mutations in other CI subunit-encoding genes where NDUFAF2 was attached to CI-830 (NDUFS1, NDUFV1 mutation) or not detected (NDUFS7 mutation). Supported by enzymological and CI in silico structural analysis, we conclude that absence of NDUFS4 induces near complete absence of NDUFA12 but not vice versa, and that NDUFAF2 stabilizes active CI in Ndufs4-/- mice and LS patient cells, perhaps in concert with mitochondrial inner membrane lipids.


Subject(s)
Electron Transport Complex I/deficiency , Electron Transport Complex I/genetics , Gene Deletion , Leigh Disease/genetics , Mitochondrial Proteins/metabolism , Molecular Chaperones/metabolism , NADPH Dehydrogenase/metabolism , Animals , Fibroblasts/metabolism , Gene Knockout Techniques , Humans , Leigh Disease/metabolism , Mice , Oxidative Phosphorylation , Protein Stability
3.
Biochim Biophys Acta Bioenerg ; 1861(8): 148202, 2020 08 01.
Article in English | MEDLINE | ID: mdl-32275929

ABSTRACT

Protein complexes from the oxidative phosphorylation (OXPHOS) system are assembled with the help of proteins called assembly factors. We here delineate the function of the inner mitochondrial membrane protein TMEM70, in which mutations have been linked to OXPHOS deficiencies, using a combination of BioID, complexome profiling and coevolution analyses. TMEM70 interacts with complex I and V and for both complexes the loss of TMEM70 results in the accumulation of an assembly intermediate followed by a reduction of the next assembly intermediate in the pathway. This indicates that TMEM70 has a role in the stability of membrane-bound subassemblies or in the membrane recruitment of subunits into the forming complex. Independent evidence for a role of TMEM70 in OXPHOS assembly comes from evolutionary analyses. The TMEM70/TMEM186/TMEM223 protein family, of which we show that TMEM186 and TMEM223 are mitochondrial in human as well, only occurs in species with OXPHOS complexes. Our results validate the use of combining complexome profiling with BioID and evolutionary analyses in elucidating congenital defects in protein complex assembly.


Subject(s)
Electron Transport Complex I/metabolism , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Biotinylation , Evolution, Molecular , Gene Knockout Techniques , HEK293 Cells , Humans , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mitochondrial Proteins/deficiency , Mitochondrial Proteins/genetics , Oxidative Phosphorylation , Protein Binding
5.
J Pediatr ; 196: 309-313.e3, 2018 05.
Article in English | MEDLINE | ID: mdl-29395179

ABSTRACT

We demonstrate that a heterozygous nuclear variant in the gene encoding mitochondrial complex I subunit NDUFV1 aggravates the cellular phenotype in the presence of a mitochondrial DNA variant in complex I subunit ND1. Our findings suggest that heterozygous variants could be more significant in inherited mitochondrial diseases than hitherto assumed.


Subject(s)
Electron Transport Complex I/deficiency , Mitochondrial Diseases/genetics , NADH Dehydrogenase/genetics , Child , DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Female , Genetic Testing/methods , Heterozygote , Humans , Infant, Newborn , Male , Mitochondrial Diseases/diagnosis , Mutation , Phenotype
6.
Eur J Hum Genet ; 25(11): 1273-1277, 2017 11.
Article in English | MEDLINE | ID: mdl-28853723

ABSTRACT

Mitochondrial respiratory chain complex I consists of 44 different subunits and can be subgrouped into three functional modules: the Q-, the P- and the N-module. NDUFAF4 (C6ORF66) is an assembly factor of complex I that associates with assembly intermediates of the Q-module. Via exome sequencing, we identified a homozygous missense variant in a complex I-deficient patient with Leigh syndrome. Supercomplex analysis in patient fibroblasts revealed specifically altered stoichiometry. Detailed assembly analysis of complex I, indicative of all of its assembly routes, showed an accumulation of parts of the P- and the N-module but not the Q-module. Lentiviral complementation of patient fibroblasts with wild-type NDUFAF4 rescued complex I deficiency and the assembly defect, confirming the causal role of the variant. Our report on the second family affected by an NDUFAF4 variant further characterizes the phenotypic spectrum and sheds light into the role of NDUFAF4 in mitochondrial complex I biogenesis.


Subject(s)
Calmodulin-Binding Proteins/genetics , Leigh Disease/genetics , Mutation, Missense , Calmodulin-Binding Proteins/metabolism , Cells, Cultured , Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Fibroblasts/metabolism , Homozygote , Humans , Infant , Leigh Disease/pathology , Male , Protein Multimerization
7.
Am J Hum Genet ; 99(1): 208-16, 2016 Jul 07.
Article in English | MEDLINE | ID: mdl-27374773

ABSTRACT

Mitochondrial complex I deficiency results in a plethora of often severe clinical phenotypes manifesting in early childhood. Here, we report on three complex-I-deficient adult subjects with relatively mild clinical symptoms, including isolated, progressive exercise-induced myalgia and exercise intolerance but with normal later development. Exome sequencing and targeted exome sequencing revealed compound-heterozygous mutations in TMEM126B, encoding a complex I assembly factor. Further biochemical analysis of subject fibroblasts revealed a severe complex I deficiency caused by defective assembly. Lentiviral complementation with the wild-type cDNA restored the complex I deficiency, demonstrating the pathogenic nature of these mutations. Further complexome analysis of one subject indicated that the complex I assembly defect occurred during assembly of its membrane module. Our results show that TMEM126B defects can lead to complex I deficiencies and, interestingly, that symptoms can occur only after exercise.


Subject(s)
Electron Transport Complex I/deficiency , Membrane Proteins/genetics , Mitochondrial Diseases/genetics , Muscle Weakness/genetics , Mutation , Adolescent , Adult , Child , Electron Transport Complex I/genetics , Exercise , Exome/genetics , Genetic Complementation Test , Heterozygote , Humans , Infant , Male , Young Adult
8.
J Inherit Metab Dis ; 39(1): 59-65, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26310962

ABSTRACT

We reported before that the minimal alveolar concentration (MAC) of isoflurane is decreased in complex I-deficient mice lacking the NDUFS4 subunit of the respiratory chain (RC) (1.55 and 0.81% at postnatal (PN) 22-25 days and 1.68 and 0.65% at PN 31-34 days for wildtype (WT) and CI-deficient KO, respectively). A more severe respiratory depression was caused by 1.0 MAC isoflurane in KO mice (respiratory rate values of 86 and 45 at PN 22-25 days and 69 and 29 at PN 31-34 days for anesthetized WT and KO, respectively). Here, we address the idea that isoflurane anesthesia causes a much larger decrease in brain mitochondrial ATP production in KO mice thus explaining their increased sensitivity to this anesthetic. Brains from WT and KO mice of the above study were removed immediately after MAC determination at PN 31-34 days and a mitochondria-enriched fraction was prepared. Aliquots were used for measurement of maximal ATP production in the presence of pyruvate, malate, ADP and creatine and, after freeze-thawing, the maximal activity of the individual RC complexes in the presence of complex-specific substrates. CI activity was dramatically decreased in KO, whereas ATP production was decreased by only 26% (p < 0.05). The activities of CII, CIII, and CIV were the same for WT and KO. Isoflurane anesthesia decreased the activity of CI by 30% (p < 0.001) in WT. In sharp contrast, it increased the activity of CII by 37% (p < 0.001) and 50% (p < 0.001) and that of CIII by 37% (p < 0.001) and 40% (p < 0.001) in WT and KO, respectively, whereas it tended to increase that of CIV in both WT and KO. Isoflurane anesthesia increased ATP production by 52 and 69% in WT (p < 0.05) and KO (p < 0.01), respectively. Together these findings indicate that isoflurane anesthesia interferes positively rather than negatively with the ability of CI-deficient mice brain mitochondria to convert their main substrate pyruvate into ATP.


Subject(s)
Adenosine Triphosphate/metabolism , Brain/drug effects , Brain/metabolism , Electron Transport Complex I/deficiency , Electron Transport Complex I/metabolism , Isoflurane/administration & dosage , Mitochondria/drug effects , Anesthesia/methods , Animals , Disease Models, Animal , Female , Male , Mice , Mice, Knockout , Mitochondria/metabolism , Pyruvic Acid/metabolism
9.
Hum Mutat ; 36(1): 34-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25339201

ABSTRACT

COA6/C1ORF31 is involved in cytochrome c oxidase (complex IV) biogenesis. We present a new pathogenic COA6 variant detected in a patient with neonatal hypertrophic cardiomyopathy and isolated complex IV deficiency. For the first time, clinical details about a COA6-deficient patient are given and patient fibroblasts are functionally characterized: COA6 protein is undetectable and steady-state levels of complex IV and several of its subunits are reduced. The monomeric COX1 assembly intermediate accumulates. Using pulse-chase experiments, we demonstrate an increased turnover of mitochondrial encoded complex IV subunits. Although monomeric complex IV is decreased in patient fibroblasts, the CI/CIII2 /CIVn -supercomplexes remain unaffected. Copper supplementation shows a partial rescue of complex IV deficiency in patient fibroblasts. We conclude that COA6 is required for complex IV subunit stability. Furthermore, the proposed role in the copper delivery pathway to complex IV subunits is substantiated and a therapeutic lead for COA6-deficient patients is provided.


Subject(s)
Cardiomyopathy, Hypertrophic/genetics , Cytochrome-c Oxidase Deficiency/genetics , Electron Transport Complex IV/genetics , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/pathology , Copper/administration & dosage , Electron Transport Complex IV/metabolism , Female , HEK293 Cells , Humans , Infant, Newborn , Mitochondria/metabolism
10.
Hum Mol Genet ; 23(23): 6356-65, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25008109

ABSTRACT

Complex III (cytochrome bc1) is a protein complex of the mitochondrial inner membrane that transfers electrons from ubiquinol to cytochrome c. Its assembly requires the coordinated expression of mitochondrial-encoded cytochrome b and nuclear-encoded subunits and assembly factors. Complex III deficiency is a severe multisystem disorder caused by mutations in subunit genes or assembly factors. Sequence-profile-based orthology predicts C11orf83, hereafter named UQCC3, to be the ortholog of the fungal complex III assembly factor CBP4. We describe a homozygous c.59T>A missense mutation in UQCC3 from a consanguineous patient diagnosed with isolated complex III deficiency, displaying lactic acidosis, hypoglycemia, hypotonia and delayed development without dysmorphic features. Patient fibroblasts have reduced complex III activity and lower levels of the holocomplex and its subunits than controls. They have no detectable UQCC3 protein and have lower levels of cytochrome b protein. Furthermore, in patient cells, cytochrome b is absent from a high-molecular-weight complex III. UQCC3 is reduced in cells depleted for the complex III assembly factors UQCC1 and UQCC2. Conversely, absence of UQCC3 in patient cells does not affect UQCC1 and UQCC2. This suggests that UQCC3 functions in the complex III assembly pathway downstream of UQCC1 and UQCC2 and is consistent with what is known about the function of Cbp4 and of the fungal orthologs of UQCC1 and UQCC2, Cbp3 and Cbp6. We conclude that UQCC3 functions in complex III assembly and that the c.59T>A mutation has a causal role in complex III deficiency.


Subject(s)
Carrier Proteins/genetics , Cytochromes b/metabolism , Electron Transport Complex III/metabolism , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Amino Acid Sequence , Carrier Proteins/metabolism , Cell Line, Tumor , Consanguinity , Electron Transport Complex III/deficiency , Electron Transport Complex III/genetics , Enzyme Stability , Female , Fibroblasts/metabolism , Humans , Infant, Newborn , Membrane Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Molecular Sequence Data , Mutation, Missense
11.
Hum Mol Genet ; 23(5): 1311-9, 2014 Mar 01.
Article in English | MEDLINE | ID: mdl-24158852

ABSTRACT

Oxidative phosphorylation and fatty acid oxidation are two major metabolic pathways in mitochondria. Acyl-CoA dehydrogenase 9 (ACAD9), an enzyme assumed to play a role in fatty acid oxidation, was recently identified as a factor involved in complex I biogenesis. Here we further investigated the role of ACAD9's enzymatic activity in fatty acid oxidation and complex I biogenesis. We provide evidence indicating that ACAD9 displays enzyme activity in vivo. Knockdown experiments in very-long-chain acyl-CoA dehydrogenase (VLCAD)-deficient fibroblasts revealed that ACAD9 is responsible for the production of C14:1-carnitine from oleate and C12-carnitine from palmitate. These results explain the origin of these obscure acylcarnitines that are used to diagnose VLCAD deficiency in humans. Knockdown of ACAD9 in control fibroblasts did not reveal changes in the acylcarnitine profiles upon fatty acid loading. Next, we investigated whether catalytic activity of ACAD9 was necessary for complex I biogenesis. Catalytically inactive ACAD9 gave partial-to-complete rescue of complex I biogenesis in ACAD9-deficient cells and was incorporated in high-molecular-weight assembly intermediates. Our results underscore the importance of the ACAD9 protein in complex I assembly and suggest that the enzymatic activity is a rudiment of the duplication event.


Subject(s)
Acyl-CoA Dehydrogenases/metabolism , Fatty Acids/metabolism , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Acyl-CoA Dehydrogenases/chemistry , Acyl-CoA Dehydrogenases/deficiency , Acyl-CoA Dehydrogenases/genetics , Carnitine/biosynthesis , Catalysis , Cell Line , Congenital Bone Marrow Failure Syndromes , Electron Transport Complex I/deficiency , Enzyme Activation , Humans , Lipid Metabolism, Inborn Errors/metabolism , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Models, Molecular , Molecular Weight , Muscular Diseases/metabolism , Mutation , Oxidation-Reduction , Oxidative Phosphorylation , Protein Conformation
12.
Nat Commun ; 4: 2886, 2013.
Article in English | MEDLINE | ID: mdl-24301020

ABSTRACT

Mitochondria are essential cellular organelles for generation of energy and their dysfunction may cause diabetes, Parkinson's disease and multi-systemic failure marked by failure to thrive, gastrointestinal problems, lactic acidosis and early lethality. Disease-associated mitochondrial mutations often affect components of the mitochondrial translation machinery. Here we perform ribosome profiling to measure mitochondrial translation at nucleotide resolution. Using a protocol optimized for the retrieval of mitochondrial ribosome protected fragments (RPFs) we show that the size distribution of wild-type mitochondrial RPFs follows a bimodal distribution peaking at 27 and 33 nucleotides, which is distinct from the 30-nucleotide peak of nuclear RPFs. Their cross-correlation suggests generation of mitochondrial RPFs during ribosome progression. In contrast, RPFs from patient-derived mitochondria mutated in tRNA-Tryptophan are centered on tryptophan codons and reduced downstream, indicating ribosome stalling. Intriguingly, long RPFs are enriched in mutated mitochondria, suggesting they characterize stalled ribosomes. Our findings provide the first model for translation in wild-type and disease-triggering mitochondria.


Subject(s)
Disease/genetics , Mitochondria/genetics , Mitochondrial Proteins/genetics , Protein Biosynthesis , Ribosomes/genetics , Cell Line , Humans , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , RNA, Transfer, Trp/genetics , RNA, Transfer, Trp/metabolism , Ribosomes/metabolism , Transcriptome
13.
PLoS One ; 8(7): e68340, 2013.
Article in English | MEDLINE | ID: mdl-23935861

ABSTRACT

Complexome profiling is a novel technique which uses shotgun proteomics to establish protein migration profiles from fractionated blue native electrophoresis gels. Here we present a dataset of blue native electrophoresis migration profiles for 953 proteins by complexome profiling. By analysis of mitochondrial ribosomal complexes we demonstrate its potential to verify putative protein-protein interactions identified by affinity purification-mass spectrometry studies. Protein complexes were extracted in their native state from a HEK293 mitochondrial fraction and separated by blue native gel electrophoresis. Gel lanes were cut into gel slices of even size and analyzed by shotgun proteomics. Subsequently, the acquired protein migration profiles were analyzed for co-migration via hierarchical cluster analysis. This dataset holds great promise as a comprehensive resource for de novo identification of protein-protein interactions or to underpin and prioritize candidate protein interactions from other studies. To demonstrate the potential use of our dataset we focussed on the mitochondrial translation machinery. Our results show that mitoribosomal complexes can be analyzed by blue native gel electrophoresis, as at least four distinct complexes. Analysis of these complexes confirmed that 24 proteins that had previously been reported to co-purify with mitoribosomes indeed co-migrated with subunits of the mitochondrial ribosome. Co-migration of several proteins involved in biogenesis of inner mitochondrial membrane complexes together with mitoribosomal complexes suggested the possibility of co-translational assembly in human cells. Our data also highlighted a putative ribonucleotide complex that potentially contains MRPL10, MRPL12 and MRPL53 together with LRPPRC and SLIRP.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Multiprotein Complexes/metabolism , Proteome/metabolism , Proteomics/methods , Chromatography, Liquid , Cluster Analysis , Databases, Protein , HEK293 Cells , Humans , Mass Spectrometry , Mitochondrial Proteins/chemistry , Protein Binding , Protein Structure, Tertiary , Ribosomal Proteins/metabolism , Subcellular Fractions/metabolism
14.
Hum Mol Genet ; 22(15): 3138-51, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23575228

ABSTRACT

It is estimated that the human mitochondrial proteome consists of 1000-1500 distinct proteins. The majority of these support the various biochemical pathways that are active in these organelles. Individuals with an oxidative phosphorylation disorder of unknown cause provide a unique opportunity to identify novel genes implicated in mitochondrial biology. We identified a homozygous deletion of CEP89 in a patient with isolated complex IV deficiency, intellectual disability and multisystemic problems. CEP89 is a ubiquitously expressed and highly conserved gene of unknown function. Immunocytochemistry and cellular fractionation experiments showed that CEP89 is present both in the cytosol and in the mitochondrial intermembrane space. Furthermore, we ascertained in vitro that downregulation of CEP89 resulted in a severe decrease in complex IV in-gel activity and altered mobility, suggesting that the complex is aberrantly formed. Two-dimensional BN-SDS gel analysis revealed that CEP89 associates with a high-molecular weight complex. Together, these data confirm a role for CEP89 in mitochondrial metabolism. In addition, we modeled CEP89 loss of function in Drosophila. Ubiquitous knockdown of fly Cep89 decreased complex IV activity and resulted in complete lethality. Furthermore, Cep89 is required for mitochondrial integrity, membrane depolarization and synaptic transmission of photoreceptor neurons, and for (sub)synaptic organization of the larval neuromuscular junction. Finally, we tested neuronal Cep89 knockdown flies in the light-off jump reflex habituation assay, which revealed its role in learning. We conclude that CEP89 proteins play an important role in mitochondrial metabolism, especially complex IV activity, and are required for neuronal and cognitive function across evolution.


Subject(s)
Cell Cycle Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/metabolism , Mitochondria/metabolism , Neurons/metabolism , Animals , Cell Cycle Proteins/genetics , Child , Chromosomes, Human, Pair 19 , Cytochrome-c Oxidase Deficiency/genetics , Cytochrome-c Oxidase Deficiency/metabolism , Cytosol , Disease Models, Animal , Drosophila/genetics , Drosophila Proteins/genetics , Female , Gene Deletion , Gene Expression , Gene Knockdown Techniques , Homozygote , Humans , Learning , Microtubule-Associated Proteins , Mitochondria/genetics , Mutation , Organ Specificity/genetics , Polymorphism, Single Nucleotide , Protein Transport , Synapses/genetics , Synapses/metabolism
15.
Neurology ; 80(17): 1577-83, 2013 Apr 23.
Article in English | MEDLINE | ID: mdl-23553477

ABSTRACT

OBJECTIVE: To identify the mutated gene in a group of patients with an unclassified heritable white matter disorder sharing the same, distinct MRI pattern. METHODS: We used MRI pattern recognition analysis to select a group of patients with a similar, characteristic MRI pattern. We performed whole-exome sequencing to identify the mutated gene. We examined patients' fibroblasts for biochemical consequences of the mutant protein. RESULTS: We identified 6 patients from 5 unrelated families with a similar MRI pattern showing predominant abnormalities of the cerebellar cortex, deep cerebral white matter, and corpus callosum. The 4 tested patients had a respiratory chain complex І deficiency. Exome sequencing revealed mutations in NUBPL, encoding an iron-sulfur cluster assembly factor for complex І, in all patients. Upon identification of the mutated gene, we analyzed the MRI of a previously published case with NUBPL mutations and found exactly the same pattern. A strongly decreased amount of NUBPL protein and fully assembled complex I was found in patients' fibroblasts. Analysis of the effect of mutated NUBPL on the assembly of the peripheral arm of complex I indicated that NUBPL is involved in assembly of iron-sulfur clusters early in the complex I assembly pathway. CONCLUSION: Our data show that NUBPL mutations are associated with a unique, consistent, and recognizable MRI pattern, which facilitates fast diagnosis and obviates the need for other tests, including assessment of mitochondrial complex activities in muscle or fibroblasts.


Subject(s)
Electron Transport Complex I/deficiency , Electron Transport Complex I/genetics , Leukoencephalopathies/genetics , Leukoencephalopathies/pathology , Mitochondrial Proteins/genetics , Mutation , DNA Mutational Analysis , Humans , Magnetic Resonance Imaging
16.
PLoS Genet ; 9(12): e1004034, 2013.
Article in English | MEDLINE | ID: mdl-24385928

ABSTRACT

Mitochondrial oxidative phosphorylation (OXPHOS) is responsible for generating the majority of cellular ATP. Complex III (ubiquinol-cytochrome c oxidoreductase) is the third of five OXPHOS complexes. Complex III assembly relies on the coordinated expression of the mitochondrial and nuclear genomes, with 10 subunits encoded by nuclear DNA and one by mitochondrial DNA (mtDNA). Complex III deficiency is a debilitating and often fatal disorder that can arise from mutations in complex III subunit genes or one of three known complex III assembly factors. The molecular cause for complex III deficiency in about half of cases, however, is unknown and there are likely many complex III assembly factors yet to be identified. Here, we used Massively Parallel Sequencing to identify a homozygous splicing mutation in the gene encoding Ubiquinol-Cytochrome c Reductase Complex Assembly Factor 2 (UQCC2) in a consanguineous Lebanese patient displaying complex III deficiency, severe intrauterine growth retardation, neonatal lactic acidosis and renal tubular dysfunction. We prove causality of the mutation via lentiviral correction studies in patient fibroblasts. Sequence-profile based orthology prediction shows UQCC2 is an ortholog of the Saccharomyces cerevisiae complex III assembly factor, Cbp6p, although its sequence has diverged substantially. Co-purification studies show that UQCC2 interacts with UQCC1, the predicted ortholog of the Cbp6p binding partner, Cbp3p. Fibroblasts from the patient with UQCC2 mutations have deficiency of UQCC1, while UQCC1-depleted cells have reduced levels of UQCC2 and complex III. We show that UQCC1 binds the newly synthesized mtDNA-encoded cytochrome b subunit of complex III and that UQCC2 patient fibroblasts have specific defects in the synthesis or stability of cytochrome b. This work reveals a new cause for complex III deficiency that can assist future patient diagnosis, and provides insight into human complex III assembly by establishing that UQCC1 and UQCC2 are complex III assembly factors participating in cytochrome b biogenesis.


Subject(s)
Cytochromes b/biosynthesis , Electron Transport Complex III/genetics , Membrane Proteins/genetics , Mitochondrial Diseases/genetics , Consanguinity , Cytochromes b/genetics , Electron Transport Complex III/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Regulation , Homozygote , Humans , Membrane Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/pathology , Mitochondrial Diseases/therapy , Mitochondrial Proteins/genetics , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutation , Oxidative Phosphorylation , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
17.
Hum Mol Genet ; 22(4): 656-67, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23125284

ABSTRACT

The mitochondrial respiratory chain complex IV (cytochrome c oxidase) is a multi-subunit enzyme that transfers electrons from cytochrome c to molecular oxygen, yielding water. Its biogenesis requires concerted expression of mitochondria- and nuclear-encoded subunits and assembly factors. In this report, we describe a homozygous missense mutation in FAM36A from a patient who displays ataxia and muscle hypotonia. The FAM36A gene is a remote, putative ortholog of the fungal complex IV assembly factor COX20. Messenger RNA (mRNA) and protein co-expression analyses support the involvement of FAM36A in complex IV function in mammals. The c.154A>C mutation in the FAM36A gene, a mutation that is absent in sequenced exomes, leads to a reduced activity and lower levels of complex IV and its protein subunits. The FAM36A protein is nearly absent in patient's fibroblasts. Cells affected by the mutation accumulate subassemblies of complex IV that contain COX1 but are almost devoid of COX2 protein. We observe co-purification of FAM36A and COX2 proteins, supporting that the FAM36A defect hampers the early step of complex IV assembly at the incorporation of the COX2 subunit. Lentiviral complementation of patient's fibroblasts with wild-type FAM36A increases the complex IV activity as well as the amount of holocomplex IV and of individual subunits. These results establish the function of the human gene FAM36A/COX20 in complex IV assembly and support a causal role of the gene in complex IV deficiency.


Subject(s)
Abnormalities, Multiple/genetics , Ataxia/genetics , Cytochrome-c Oxidase Deficiency/genetics , Ion Channels/genetics , Muscle Hypotonia/genetics , Protein Multimerization , Abnormalities, Multiple/metabolism , Amino Acid Sequence , Animals , Ataxia/metabolism , Base Sequence , Cells, Cultured , Child , Consanguinity , Cytochrome-c Oxidase Deficiency/metabolism , DNA Mutational Analysis , Electron Transport Complex IV/metabolism , Gene Expression , Humans , Ion Channels/metabolism , Lactic Acid/blood , Lactic Acid/cerebrospinal fluid , Male , Membrane Proteins/genetics , Mice , Mitochondria/enzymology , Mitochondrial Proteins/genetics , Molecular Sequence Data , Muscle Hypotonia/metabolism , Mutation, Missense , Saccharomyces cerevisiae Proteins/genetics
18.
J Biol Chem ; 287(50): 41851-60, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23038253

ABSTRACT

Studies employing native PAGE suggest that most nDNA-encoded CI subunits form subassemblies before assembling into holo-CI. In addition, in vitro evidence suggests that some subunits can directly exchange in holo-CI. Presently, data on the kinetics of these two incorporation modes for individual CI subunits during CI maintenance are sparse. Here, we used inducible HEK293 cell lines stably expressing AcGFP1-tagged CI subunits and quantified the amount of tagged subunit in mitoplasts and holo-CI by non-native and native PAGE, respectively, to determine their CI incorporation efficiency. Analysis of time courses of induction revealed three subunit-specific patterns. A first pattern, represented by NDUFS1, showed overlapping time courses, indicating that imported subunits predominantly incorporate into holo-CI. A second pattern, represented by NDUFV1, consisted of parallel time courses, which were, however, not quantitatively overlapping, suggesting that imported subunits incorporate at similar rates into holo-CI and CI assembly intermediates. The third pattern, represented by NDUFS3 and NDUFA2, revealed a delayed incorporation into holo-CI, suggesting their prior appearance in CI assembly intermediates and/or as free monomers. Our analysis showed the same maximum incorporation into holo-CI for NDUFV1, NDUFV2, NDUFS1, NDUFS3, NDUFS4, NDUFA2, and NDUFA12 with nearly complete loss of endogenous subunit at 24 h of induction, indicative of an equimolar stoichiometry and unexpectedly rapid turnover. In conclusion, the results presented demonstrate that newly formed nDNA-encoded CI subunits rapidly incorporate into holo-CI in a subunit-specific manner.


Subject(s)
Electron Transport Complex I/metabolism , Homeostasis/physiology , Mitochondrial Proteins/metabolism , Protein Subunits/metabolism , Animals , Cricetinae , Cricetulus , Electron Transport Complex I/genetics , HEK293 Cells , Humans , Kinetics , Mitochondrial Proteins/genetics , Protein Subunits/genetics
19.
Nat Genet ; 44(7): 797-802, 2012 Jun 10.
Article in English | MEDLINE | ID: mdl-22683713

ABSTRACT

Using exome sequencing, we identify SERAC1 mutations as the cause of MEGDEL syndrome, a recessive disorder of dystonia and deafness with Leigh-like syndrome, impaired oxidative phosphorylation and 3-methylglutaconic aciduria. We localized SERAC1 at the interface between the mitochondria and the endoplasmic reticulum in the mitochondria-associated membrane fraction that is essential for phospholipid exchange. A phospholipid analysis in patient fibroblasts showed elevated concentrations of phosphatidylglycerol-34:1 (where the species nomenclature denotes the number of carbon atoms in the two acyl chains:number of double bonds in the two acyl groups) and decreased concentrations of phosphatidylglycerol-36:1 species, resulting in an altered cardiolipin subspecies composition. We also detected low concentrations of bis(monoacyl-glycerol)-phosphate, leading to the accumulation of free cholesterol, as shown by abnormal filipin staining. Complementation of patient fibroblasts with wild-type human SERAC1 by lentiviral infection led to a decrease and partial normalization of the mean ratio of phosphatidylglycerol-34:1 to phosphatidylglycerol-36:1. Our data identify SERAC1 as a key player in the phosphatidylglycerol remodeling that is essential for both mitochondrial function and intracellular cholesterol trafficking.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Cholesterol/metabolism , Deafness/genetics , Dystonia/genetics , Mitochondria/genetics , Mutation , Phospholipids/metabolism , Amino Acid Sequence , Carboxylic Ester Hydrolases/metabolism , Cardiolipins/genetics , Cardiolipins/metabolism , Cell Line, Transformed , Cell Line, Tumor , Cholesterol/genetics , Deafness/metabolism , Dystonia/metabolism , Exome , Fibroblasts/metabolism , HEK293 Cells , HeLa Cells , Humans , Mitochondria/metabolism , Molecular Sequence Data , Oxidative Phosphorylation , Phosphatidylglycerols/genetics , Phosphatidylglycerols/metabolism , Phospholipids/genetics , Sequence Alignment
20.
Proteomics ; 12(9): 1349-62, 2012 May.
Article in English | MEDLINE | ID: mdl-22589185

ABSTRACT

Most eukaryotic cells depend on mitochondrial OXidative PHOSphorylation (OXPHOS) in their ATP supply. The cellular consequences of OXPHOS defects and the pathophysiological mechanisms in related disorders are incompletely understood. Using a quantitative proteomics approach we provide evidence that a genetic defect of complex-I of the OXPHOS system may associate with transcriptional derangements of mitochondrial biogenesis through stabilization of the master transcriptional regulator PPARγ co-activator 1α (PGC-1α) protein. Chronic oxidative stress suppresses the gene expression of PGC-1α but concomitant inhibition of the ubiquitin-proteasome system (UPS) can stabilize this co-activator protein, thereby inducing its downstream metabolic gene expression programs. Thus, mitochondrial biogenesis, which lays at the heart of the homeostatic control of energy metabolism, can be deregulated by secondary impairments of the protein turnover machinery.


Subject(s)
Heat-Shock Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Transcription Factors/metabolism , Ubiquitin/metabolism , Cells, Cultured , Electron Transport Complex I , Fibroblasts , Gene Expression , Heat-Shock Proteins/genetics , Humans , Hydrogen Peroxide/metabolism , Mitochondrial Proteins/analysis , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Oxidative Phosphorylation , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Proteome , Real-Time Polymerase Chain Reaction , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL