Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Genome Med ; 15(1): 104, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38053165

ABSTRACT

BACKGROUND: Normal cell BRCA1 epimutations have been associated with increased risk of triple-negative breast cancer (TNBC). However, the fraction of TNBCs that may have BRCA1 epimutations as their underlying cause is unknown. Neither are the time of occurrence and the potential inheritance patterns of BRCA1 epimutations established. METHODS: To address these questions, we analyzed BRCA1 methylation status in breast cancer tissue and matched white blood cells (WBC) from 408 patients with 411 primary breast cancers, including 66 TNBCs, applying a highly sensitive sequencing assay, allowing allele-resolved methylation assessment. Furthermore, to assess the time of origin and the characteristics of normal cell BRCA1 methylation, we analyzed umbilical cord blood of 1260 newborn girls and 200 newborn boys. Finally, we assessed BRCA1 methylation status among 575 mothers and 531 fathers of girls with (n = 102) and without (n = 473) BRCA1 methylation. RESULTS: We found concordant tumor and mosaic WBC BRCA1 epimutations in 10 out of 66 patients with TNBC and in four out of six patients with estrogen receptor (ER)-low expression (< 10%) tumors (combined: 14 out of 72; 19.4%; 95% CI 11.1-30.5). In contrast, we found concordant WBC and tumor methylation in only three out of 220 patients with 221 ER ≥ 10% tumors and zero out of 114 patients with 116 HER2-positive tumors. Intraindividually, BRCA1 epimutations affected the same allele in normal and tumor cells. Assessing BRCA1 methylation in umbilical WBCs from girls, we found mosaic, predominantly monoallelic BRCA1 epimutations, with qualitative features similar to those in adults, in 113/1260 (9.0%) of individuals, but no correlation to BRCA1 methylation status either in mothers or fathers. A significantly lower fraction of newborn boys carried BRCA1 methylation (9/200; 4.5%) as compared to girls (p = 0.038). Similarly, WBC BRCA1 methylation was found less common among fathers (16/531; 3.0%), as compared to mothers (46/575; 8.0%; p = 0.0003). CONCLUSIONS: Our findings suggest prenatal BRCA1 epimutations might be the underlying cause of around 20% of TNBC and low-ER expression breast cancers. Such constitutional mosaic BRCA1 methylation likely arise through gender-related mechanisms in utero, independent of Mendelian inheritance.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Adult , Female , Infant, Newborn , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Breast Neoplasms/genetics , DNA Methylation , Promoter Regions, Genetic , BRCA1 Protein/genetics
2.
JCO Precis Oncol ; 7: e2300338, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38039432

ABSTRACT

PURPOSE: Homologous recombination deficiency (HRD) is highly prevalent in triple-negative breast cancer (TNBC) and associated with response to PARP inhibition (PARPi). Here, we studied the prevalence of HRD in non-TNBC to assess the potential for PARPi in a wider group of patients with breast cancer. METHODS: HRD status was established using targeted gene panel sequencing (360 genes) and BRCA1 methylation analysis of pretreatment biopsies from 201 patients with primary breast cancer in the phase II PETREMAC trial (ClinicalTrials.gov identifier: NCT02624973). HRD was defined as mutations in BRCA1, BRCA2, BRIP1, BARD1, or PALB2 and/or promoter methylation of BRCA1 (strict definition; HRD-S). In secondary analyses, a wider definition (HRD-W) was used, examining mutations in 20 additional genes. Furthermore, tumor BRCAness (multiplex ligation-dependent probe amplification), PAM50 subtyping, RAD51 nuclear foci to test functional HRD, tumor-infiltrating lymphocyte (TIL), and PD-L1 analyses were performed. RESULTS: HRD-S was present in 5% of non-TNBC cases (n = 9 of 169), contrasting 47% of the TNBC tumors (n = 15 of 32). HRD-W was observed in 23% of non-TNBC (n = 39 of 169) and 59% of TNBC cases (n = 19 of 32). Of 58 non-TNBC and 30 TNBC biopsies examined for RAD51 foci, 4 of 4 (100%) non-TNBC and 13 of 14 (93%) TNBC cases classified as HRD-S had RAD51 low scores. In contrast, 4 of 17 (24%) non-TNBC and 15 of 19 (79%) TNBC biopsies classified as HRD-W exhibited RAD51 low scores. Of nine non-TNBC tumors with HRD-S status, only one had a basal-like PAM50 signature. There was a high concordance between HRD-S and either BRCAness, high TIL density, or high PD-L1 expression (each P < .001). CONCLUSION: The prevalence of HRD in non-TNBC suggests that therapy targeting HRD should be evaluated in a wider breast cancer patient population. Strict HRD criteria should be implemented to increase diagnostic precision with respect to functional HRD.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , B7-H1 Antigen/genetics , Genes, BRCA2 , Mutation , Homologous Recombination/genetics
3.
JAMA Oncol ; 8(11): 1579-1587, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36074460

ABSTRACT

Importance: About 25% of all triple-negative breast cancers (TNBCs) and 10% to 20% of high-grade serous ovarian cancers (HGSOCs) harbor BRCA1 promoter methylation. While constitutional BRCA1 promoter methylation has been observed in normal tissues of some individuals, the potential role of normal tissue methylation as a risk factor for incident TNBC or HGSOC is unknown. Objective: To assess the potential association between white blood cell BRCA1 promoter methylation and subsequent risk of incident TNBC and HGSOC. Design, Setting, and Participants: This case-control study included women who were participating in the Women's Health Initiative study who had not received a diagnosis of either breast or ovarian cancer before study entrance. A total of 637 women developing incident TNBC and 511 women developing incident HGSOC were matched with cancer-free controls (1841 and 2982, respectively) in a nested case-control design. Cancers were confirmed after central medical record review. Blood samples, which were collected at entry, were analyzed for BRCA1 promoter methylation by massive parallel sequencing. The study was performed in the Mohn Cancer Research Laboratory (Bergen, Norway) between 2019 and 2022. Main Outcomes and Measures: Associations between BRCA1 methylation and incident TNBC and incident HGSOC were analyzed by Cox proportional hazards regression. Results: Of 2478 cases and controls in the TNBC group and 3493 cases and controls in the HGSOC group, respectively, 7 (0.3%) and 3 (0.1%) were American Indian or Alaska Native, 46 (1.9%) and 30 (0.9%) were Asian, 1 (0.04%) and 1 (0.03%) was Native Hawaiian or Pacific Islander, 326 (13.2%) and 125 (3.6%) were Black or African, 56 (2.3%) and 116 (3.3%) were Hispanic, 2046 (82.6%) and 3257 (93.2%) were White, and 35 (1.4%) and 35 (1.0%) were multiracial. Median (range) age at entry was 62 (50-79) years, with a median interval to diagnosis of 9 (TNBC) and 10 (HGSOC) years. Methylated BRCA1 alleles were present in 194 controls (5.5%). Methylation was associated with risk of incident TNBC (12.4% methylated; HR, 2.35; 95% CI, 1.70-3.23; P < .001) and incident HGSOC (9.4% methylated; HR, 1.93; 95% CI, 1.36-2.73; P < .001). Restricting analyses to individuals with more than 5 years between sampling and cancer diagnosis yielded similar results (TNBC: HR, 2.52; 95% CI, 1.75-3.63; P < .001; HGSOC: HR, 1.82; 95% CI, 1.22-2.72; P = .003). Across individuals, methylation was not haplotype-specific, arguing against an underlying cis-acting factor. Within individuals, BRCA1 methylation was observed on the same allele, indicating clonal expansion from a single methylation event. There was no association found between BRCA1 methylation and germline pathogenic variant status. Conclusions and Relevance: The results of this case-control suggest that constitutional normal tissue BRCA1 promoter methylation is significantly associated with risk of incident TNBC and HGSOC, with potential implications for prediction of these cancers. These findings warrant further research to determine if constitutional methylation of tumor suppressor genes are pancancer risk factors.


Subject(s)
Ovarian Neoplasms , Triple Negative Breast Neoplasms , Female , Humans , Triple Negative Breast Neoplasms/epidemiology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Case-Control Studies , BRCA1 Protein/genetics , Promoter Regions, Genetic , Ovarian Neoplasms/epidemiology , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , DNA Methylation
4.
Gigascience ; 122022 12 28.
Article in English | MEDLINE | ID: mdl-37919976

ABSTRACT

Low-level mosaic epimutations within the BRCA1 gene promoter occur in 5-8% of healthy individuals and are associated with a significantly elevated risk of breast and ovarian cancer. Similar events may also affect other tumor suppressor genes, potentially being a significant contributor to cancer burden. While this opens a new area for translational research, detection of low-level mosaic epigenetic events requires highly sensitive and robust methodology for methylation analysis. We here present epialleleR, a computational framework for sensitive detection, quantification, and visualization of mosaic epimutations in methylation sequencing data. Analyzing simulated and real data sets, we provide in-depth assessments of epialleleR performance and show that linkage to epihaplotype data is necessary to detect low-level methylation events. The epialleleR is freely available at https://github.com/BBCG/epialleleR and https://bioconductor.org/packages/epialleleR/ as an open-source R/Bioconductor package.


Subject(s)
DNA Methylation , Software , Humans , Alleles , Epigenomics , Promoter Regions, Genetic
5.
Endocr Relat Cancer ; 29(1): 1-14, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34647903

ABSTRACT

High-grade (HG) gastroenteropancreatic (GEP) neuroendocrine neoplasms (NEN) are rare but have a very poor prognosis and represent a severely understudied class of tumours. Molecular data for HG GEP-NEN are limited, and treatment strategies for the carcinoma subgroup (HG GEP-NEC) are extrapolated from small-cell lung cancer (SCLC). After pathological re-evaluation, we analysed DNA from tumours and matched blood samples from 181 HG GEP-NEN patients; 152 neuroendocrine carcinomas (NEC) and 29 neuroendocrine tumours (NET G3). Based on the sequencing of 360 cancer-related genes, we assessed mutations and copy number alterations (CNA). For NEC, frequently mutated genes were TP53 (64%), APC (28%), KRAS (22%) and BRAF (20%). RB1 was only mutated in 14%, but CNAs affecting RB1 were seen in 34%. Other frequent copy number losses were ARID1A (35%), ESR1 (25%) and ATM (31%). Frequent amplifications/gains were found in MYC (51%) and KDM5A (45%). While these molecular features had limited similarities with SCLC, we found potentially targetable alterations in 66% of the NEC samples. Mutations and CNA varied according to primary tumour site with BRAF mutations mainly seen in colon (49%), and FBXW7 mutations mainly seen in rectal cancers (25%). Eight out of 152 (5.3%) NEC were microsatellite instable (MSI). NET G3 had frequent mutations in MEN1 (21%), ATRX (17%), DAXX, SETD2 and TP53 (each 14%). We show molecular differences in HG GEP-NEN, related to morphological differentiation and site of origin. Limited similarities to SCLC and a high fraction of targetable alterations indicate a high potential for better-personalized treatments.


Subject(s)
Carcinoma, Neuroendocrine , Intestinal Neoplasms , Neuroendocrine Tumors , Pancreatic Neoplasms , Stomach Neoplasms , Carcinoma, Neuroendocrine/genetics , Humans , Intestinal Neoplasms/genetics , Intestinal Neoplasms/pathology , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins B-raf , Retinoblastoma-Binding Protein 2 , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology
6.
Bioinformatics ; 38(1): 133-140, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34383893

ABSTRACT

MOTIVATION: With recent advances in the field of epigenetics, the focus is widening from large and frequent disease- or phenotype-related methylation signatures to rare alterations transmitted mitotically or transgenerationally (constitutional epimutations). Merging evidence indicate that such constitutional alterations, albeit occurring at a low mosaic level, may confer risk of disease later in life. Given their inherently low incidence rate and mosaic nature, there is a need for bioinformatic tools specifically designed to analyze such events. RESULTS: We have developed a method (ramr) to identify aberrantly methylated DNA regions (AMRs). ramr can be applied to methylation data obtained by array or next-generation sequencing techniques to discover AMRs being associated with elevated risk of cancer as well as other diseases. We assessed accuracy and performance metrics of ramr and confirmed its applicability for analysis of large public datasets. Using ramr we identified aberrantly methylated regions that are known or may potentially be associated with development of colorectal cancer and provided functional annotation of AMRs that arise at early developmental stages. AVAILABILITY AND IMPLEMENTATION: The R package is freely available at https://github.com/BBCG/ramr and https://bioconductor.org/packages/ramr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
DNA Methylation , Software , DNA , High-Throughput Nucleotide Sequencing , Protein Processing, Post-Translational
7.
FEBS J ; 288(9): 2930-2955, 2021 05.
Article in English | MEDLINE | ID: mdl-33175445

ABSTRACT

Activity-regulated cytoskeleton-associated protein (Arc) is a protein interaction hub with diverse roles in intracellular neuronal signaling, and important functions in neuronal synaptic plasticity, memory, and postnatal cortical development. Arc has homology to retroviral Gag protein and is capable of self-assembly into virus-like capsids implicated in the intercellular transfer of RNA. However, the molecular basis of Arc self-association and capsid formation is largely unknown. Here, we identified a 28-amino-acid stretch in the mammalian Arc N-terminal (NT) domain that is necessary and sufficient for self-association. Within this region, we identified a 7-residue oligomerization motif, critical for the formation of virus-like capsids. Purified wild-type Arc formed capsids as shown by transmission and cryo-electron microscopy, whereas mutant Arc with disruption of the oligomerization motif formed homogenous dimers. An atomic-resolution crystal structure of the oligomerization region peptide demonstrated an antiparallel coiled-coil interface, strongly supporting NT-NT domain interactions in Arc oligomerization. The NT coil-coil interaction was also validated in live neurons using fluorescence lifetime FRET imaging, and mutation of the oligomerization motif disrupted Arc-facilitated endocytosis. Furthermore, using single-molecule photobleaching, we show that Arc mRNA greatly enhances higher-order oligomerization in a manner dependent on the oligomerization motif. In conclusion, a helical coil in the Arc NT domain supports self-association above the dimer stage, mRNA-induced oligomerization, and formation of virus-like capsids. DATABASE: The coordinates and structure factors for crystallographic analysis of the oligomerization region were deposited at the Protein Data Bank with the entry code 6YTU.


Subject(s)
Amino Acid Motifs/genetics , Cytoskeletal Proteins/ultrastructure , Drosophila Proteins/genetics , Nerve Tissue Proteins/ultrastructure , Neurons/metabolism , Protein Conformation , Animals , Capsid Proteins/genetics , Cryoelectron Microscopy , Crystallography, X-Ray , Cytoskeletal Proteins/genetics , Drosophila Proteins/ultrastructure , Humans , Nerve Tissue Proteins/genetics , Neuronal Plasticity/genetics , Protein Domains/genetics , RNA/genetics , Sequence Homology, Amino Acid , Signal Transduction/genetics , Virion/genetics
8.
J Neurochem ; 147(3): 323-343, 2018 11.
Article in English | MEDLINE | ID: mdl-30028513

ABSTRACT

The activity-regulated cytoskeleton-associated protein (ARC) is critical for long-term synaptic plasticity and memory formation. Acting as a protein interaction hub, ARC regulates diverse signalling events in postsynaptic neurons. A protein interaction site is present in the ARC C-terminal domain (CTD), a bilobar structure homologous to the retroviral Gag capsid domain. We hypothesized that detailed knowledge of the three-dimensional molecular structure of monomeric full-length ARC is crucial to understand its function; therefore, we set out to determine the structure of ARC to understand its various functional modalities. We purified recombinant ARC and analyzed its structure using small-angle X-ray scattering and synchrotron radiation circular dichroism spectroscopy. Monomeric full-length ARC has a compact, closed structure, in which the oppositely charged N-terminal domain (NTD) and CTD are juxtaposed, and the flexible linker between them is not extended. The modeled structure of ARC is supported by intramolecular live-cell Förster resonance energy transfer imaging in rat hippocampal slices. Peptides from several postsynaptic proteins, including stargazin, bind to the N-lobe, but not to the C-lobe, of the bilobar CTD. This interaction does not induce large-scale conformational changes in the CTD or flanking unfolded regions. The ARC NTD contains long helices, predicted to form an anti-parallel coiled coil; binding of ARC to phospholipid membranes requires the NTD. Our data support a role for the ARC NTD in oligomerization as well as lipid membrane binding. The findings have important implications for the structural organization of ARC with respect to distinct functions, such as postsynaptic signal transduction and virus-like capsid formation. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Subject(s)
Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/physiology , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/physiology , Animals , Circular Dichroism , Fluorescence Resonance Energy Transfer , Hippocampus/chemistry , Humans , Male , Models, Molecular , Molecular Structure , Neurons/chemistry , Neurons/ultrastructure , Protein Conformation , Protein Domains , Rats , Rats, Sprague-Dawley , Recombinant Proteins , Scattering, Radiation , X-Rays
9.
Semin Cell Dev Biol ; 77: 33-42, 2018 05.
Article in English | MEDLINE | ID: mdl-28890419

ABSTRACT

Mammalian excitatory synapses express diverse types of synaptic plasticity. A major challenge in neuroscience is to understand how a neuron utilizes different types of plasticity to sculpt brain development, function, and behavior. Neuronal activity-induced expression of the immediate early protein, Arc, is critical for long-term potentiation and depression of synaptic transmission, homeostatic synaptic scaling, and adaptive functions such as long-term memory formation. However, the molecular basis of Arc protein function as a regulator of synaptic plasticity and cognition remains a puzzle. Recent work on the biophysical and structural properties of Arc, its protein-protein interactions and post-translational modifications have shed light on the issue. Here, we present Arc protein as a flexible, multifunctional and interactive hub. Arc interacts with specific effector proteins in neuronal compartments (dendritic spines, nuclear domains) to bidirectionally regulate synaptic strength by distinct molecular mechanisms. Arc stability, subcellular localization, and interactions are dictated by synaptic activity and post-translational modification of Arc. This functional versatility and context-dependent signaling supports a view of Arc as a highly specialized master organizer of long-term synaptic plasticity, critical for information storage and cognition.


Subject(s)
Brain/physiology , Cognition/physiology , Cytoskeletal Proteins/metabolism , Memory, Long-Term/physiology , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/physiology , Synaptic Transmission/physiology , Animals , Brain/growth & development , Endocytosis/physiology , Humans , Mice , Protein Processing, Post-Translational/genetics , Rats , Receptors, Glutamate/metabolism , Synapses/metabolism
10.
Neuroscience ; 360: 68-80, 2017 Sep 30.
Article in English | MEDLINE | ID: mdl-28736134

ABSTRACT

Activity-regulated cytoskeletal-associated protein (Arc) is implicated as a master regulator of long-term synaptic plasticity and memory formation in mammalian brain. Arc acts at synapses and within the nucleus, but the mechanisms controlling Arc localization and function are little known. As Arc transcription and translation are regulated by extracellularsignal-regulated kinase (ERK) signaling, we asked whether Arc protein itself is phosphorylated by ERK. GST-fused Arc of rat origin was able to pull down endogenous ERK2 from rat hippocampal lysates. Using a peptide array, we show that ERK binds a non-canonical docking (D) motif in the C-terminal domain of Arc, and this interaction is abolished by phosphorylation of Tyr309. Activated ERK2 phosphorylated bacterially expressed Arc in vitro at all five predicted sites, as confirmed by phospho-specific protein staining and LC-MS/MS analysis. In neuroblastoma cells expressing epitope tagged-Arc, we demonstrate ERK-dependent phosphorylation of Arc in response to activation of muscarinic cholinergic receptors with carbachol. Using phosphosite-specific antibodies, this stimulus-evoked phosphorylation was shown to occur on Ser206 located within the central hinge region of Arc. In cultured hippocampal neurons expressing phosphomutant Arc under control of the activity-dependent promoter, we show that Ser206 phosphorylation regulates the nuclear:cytosolic localization of Arc. Thus, the neuronal activity-induced phosphomimic exhibits enhanced cytosolic localization relative to phosphodeficient and wild-type Arc. Furthermore, enhanced Ser206 phosphorylation of endogenous Arc was detected in the dentate gyrus cytoskeletal fraction after induction of long-term potentiation (LTP) in live rats. Taken together, this work demonstrates stimulus-evoked ERK-dependent phosphorylation and regulation of Arc protein.


Subject(s)
Cytoskeletal Proteins/metabolism , Long-Term Potentiation/physiology , Nerve Tissue Proteins/metabolism , Neuronal Plasticity/physiology , Animals , Cytoskeleton/metabolism , Hippocampus/metabolism , Mitogen-Activated Protein Kinases/metabolism , Neurons/metabolism , Phosphorylation , Rats , Signal Transduction/drug effects , Synapses/metabolism
11.
Front Mol Neurosci ; 10: 192, 2017.
Article in English | MEDLINE | ID: mdl-28670266

ABSTRACT

The selective and neuronal activity-dependent degradation of synaptic proteins appears to be crucial for long-term synaptic plasticity. One such protein is activity-regulated cytoskeleton-associated protein (Arc), which regulates the synaptic content of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR), excitatory synapse strength and dendritic spine morphology. The levels of Arc protein are tightly regulated, and its removal occurs via proteasome-mediated degradation that requires prior ubiquitination. Glycogen synthase kinases α and ß (GSK3α, GSKß; collectively named GSK3α/ß) are serine-threonine kinases with abundant expression in the central nervous system. Both GSK3 isozymes are tonically active under basal conditions, but their activity is regulated by intra- and extracellular factors, intimately involved in neuronal activity. Similar to Arc, GSK3α and GSK3ß contribute to synaptic plasticity and the structural plasticity of dendritic spines. The present study identified Arc as a GSK3α/ß substrate and showed that GSKß promotes Arc degradation under conditions that induce de novo Arc synthesis. We also found that GSK3α/ß inhibition potentiated spine head thinning that was caused by the prolonged stimulation of N-methyl-D-aspartate receptors (NMDAR). Furthermore, overexpression of Arc mutants that were resistant to GSK3ß-mediated phosphorylation or ubiquitination resulted in a stronger reduction of dendritic spine width than wildtype Arc overexpression. Thus, GSK3ß terminates Arc expression and limits its effect on dendritic spine morphology. Taken together, the results identify GSK3α/ß-catalyzed Arc phosphorylation and degradation as a novel mechanism for controlling the duration of Arc expression and function.

12.
J Alzheimers Dis ; 59(2): 723-735, 2017.
Article in English | MEDLINE | ID: mdl-28671113

ABSTRACT

BACKGROUND: Cognitive functions are highly heritable and polygenic, though the source of this genetic influence is unclear. On the neurobiological level, these functions rely on effective neuroplasticity, in which the activity-regulated cytoskeleton associated protein (ARC) plays an essential role. OBJECTIVES: To examine whether the ARC gene complex may contribute to the genetic components of intellectual function given the crucial role of ARC in brain plasticity and memory formation. METHODS: The ARC complex was tested for association with intelligence (IQ) in children from the Avon Longitudinal Study of Parents and Children (ALSPAC, N = 5,165). As Alzheimer's disease (AD) shares genetics with cognitive functioning, the association was followed up in an AD sample (17,008 cases, 37,154 controls). RESULTS: The ARC complex revealed association with verbal and total IQ (empirical p = 0.027 and 0.041, respectively) in the ALSPAC. The strongest single variant signal (rs2830077; empirical p = 0.018), within the APP gene, was confirmed in the AD sample (p = 2.76E-03). Functional analyses of this variant showed its preferential binding to the transcription factor CP2. DISCUSSION: This study implicates APP in childhood IQ. While follow-up studies are needed, this observation could help elucidate the etiology of disorders associated with cognitive dysfunction, such as AD.


Subject(s)
Amyloid beta-Protein Precursor/genetics , Cytoskeletal Proteins/genetics , Intelligence/genetics , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide/genetics , Alzheimer Disease/genetics , Child , Computer Simulation , Electrophoretic Mobility Shift Assay , Female , Genotype , Humans , Longitudinal Studies , Male , Memory/physiology , Models, Genetic , Verbal Behavior
13.
Dis Markers ; 2016: 3693096, 2016.
Article in English | MEDLINE | ID: mdl-27725787

ABSTRACT

The critical point for successful treatment of cancer is diagnosis at early stages of tumor development. Cancer cell-specific methylated DNA has been found in the blood of cancer patients, indicating that cell-free DNA (cfDNA) circulating in the blood is a convenient tumor-associated DNA marker. Therefore methylated cfDNA can be used as a minimally invasive diagnostic marker. We analysed the concentration of plasma cfDNA and methylation of six tumor suppressor genes in samples of 27 patients with renal cancer and 15 healthy donors as controls. The cfDNA concentrations in samples from cancer patients and healthy donors was measured using two different methods, the SYBR Green I fluorescence test and quantitative real-time PCR. Both methods revealed a statistically significant increase of cfDNA concentrations in cancer patients. Hypermethylation on cfDNA was detected for the LRRC3B (74.1%), APC (51.9%), FHIT (55.6%), and RASSF1 (62.9%) genes in patients with renal cancer. Promoter methylation of VHL and ITGA9 genes was not found on cfDNA. Our results confirmed that the cfDNA level and methylation of CpG islands of RASSF1A, FHIT, and APC genes in blood plasma can be used as noninvasive diagnostic markers of cancer.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Renal Cell/blood , DNA Methylation , DNA, Neoplasm/blood , Kidney Neoplasms/blood , Acid Anhydride Hydrolases/genetics , Adenomatous Polyposis Coli Protein/genetics , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/genetics , Case-Control Studies , CpG Islands , DNA, Neoplasm/genetics , Female , Humans , Kidney Neoplasms/genetics , Male , Middle Aged , Neoplasm Proteins/genetics , Promoter Regions, Genetic , Tumor Suppressor Proteins/genetics
14.
Gene ; 505(2): 360-4, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22750298

ABSTRACT

Intersectin 1 (ITSN1) is a multidomain adaptor protein that functions in clathrin-mediated endocytosis and signal transduction. This protein is highly abundant in neurons and is implicated in Down syndrome, Alzheimer's disease and, possibly, other neurodegenerative disorders. Here we used an in vitro binding assay combined with MALDI-TOF mass spectrometry to identify novel binding partners of ITSN1. We found that the neuron-specific isoform of the stable tubule-only polypeptide (STOP) interacts with SH3A domain of ITSN1. STOP and ITSN1 were shown to form a complex in vivo and to partially co-localize in rat primary hippocampal neurons. As STOP is a microtubule-stabilizing protein that is required for several forms of synaptic plasticity in the hippocampus, identification of this interaction raises the possibility of ITSN1 participation in this process.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Hippocampus/metabolism , Microtubule-Associated Proteins/metabolism , Neurons/metabolism , Adaptor Proteins, Vesicular Transport/chemistry , Adaptor Proteins, Vesicular Transport/genetics , Animals , Cell Line , Mice , Mice, Inbred BALB C , Protein Binding , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , Rats
15.
RNA ; 18(1): 1-15, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22128342

ABSTRACT

Pre-mRNA structure impacts many cellular processes, including splicing in genes associated with disease. The contemporary paradigm of RNA structure prediction is biased toward secondary structures that occur within short ranges of pre-mRNA, although long-range base-pairings are known to be at least as important. Recently, we developed an efficient method for detecting conserved RNA structures on the genome-wide scale, one that does not require multiple sequence alignments and works equally well for the detection of local and long-range base-pairings. Using an enhanced method that detects base-pairings at all possible combinations of splice sites within each gene, we now report RNA structures that could be involved in the regulation of splicing in mammals. Statistically, we demonstrate strong association between the occurrence of conserved RNA structures and alternative splicing, where local RNA structures are generally more frequent at alternative donor splice sites, while long-range structures are more associated with weak alternative acceptor splice sites. As an example, we validated the RNA structure in the human SF1 gene using minigenes in the HEK293 cell line. Point mutations that disrupted the base-pairing of two complementary boxes between exons 9 and 10 of this gene altered the splicing pattern, while the compensatory mutations that reestablished the base-pairing reverted splicing to that of the wild-type. There is statistical evidence for a Dscam-like class of mammalian genes, in which mutually exclusive RNA structures control mutually exclusive alternative splicing. In sum, we propose that long-range base-pairings carry an important, yet unconsidered part of the splicing code, and that, even by modest estimates, there must be thousands of such potentially regulatory structures conserved throughout the evolutionary history of mammals.


Subject(s)
Alternative Splicing , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Splicing , Animals , Base Sequence , Conserved Sequence , Doublecortin-Like Kinases , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Molecular Sequence Data , Nucleic Acid Conformation , Protein Serine-Threonine Kinases/genetics , RNA Splice Sites , Sequence Analysis, RNA
16.
Gene ; 473(2): 67-75, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21145950

ABSTRACT

Adaptor/scaffold proteins serve as platforms for the assembly of multiprotein complexes and regulate the efficiency and specificity of signalling cascades. Intersectins (ITSNs) are an evolutionarily conserved adaptor protein family engaged in endo- and exocytosis, actin cytoskeleton rearrangement and signal transduction. This review summarizes recent advances in the function of ITSNs in neuronal and non-neuronal cells, the role of alternative splicing and alternative transcription in regulating the structural and functional diversity of ITSNs, their expression patterns in different tissues and during development, their interactions with proteins, as well as the potential relevance of ITSNs for neurodegenerative diseases and cancer. The diversity of mechanisms in the regulation of ITSN expression and specificity in different cells emphasizes the important role of ITSN proteins in vesicle trafficking and signalling.


Subject(s)
Adaptor Proteins, Vesicular Transport/physiology , Gene Expression Regulation , Actins , Adaptor Proteins, Vesicular Transport/chemistry , Alternative Splicing , Animals , Endocytosis , Exocytosis , Neurons/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Signal Transduction
17.
Mol Biol Rep ; 37(6): 2789-96, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19777371

ABSTRACT

Intersectin 1 (ITSN1) is an evolutionarily conserved adaptor protein that functions in clathrin-mediated endocytosis, cell signalling and cytoskeleton rearrangements. The ITSN1 gene encodes two main isoforms: a short form (ITSN1-s), which is ubiquitously expressed and consists of two Eps15 homology (EH) domains and five Src homology 3 (SH3) domains, and a long form (ITSN1-l), which is predominantly expressed in the brain and contains three additional domains, a Dbl homology (DH) domain, a Pleckstrin homology (PH) domain and a C2 domain. Using computational analysis of the EST database and 3' RACE we determined the length of the 3' untranslated region of ITSN1-l and demonstrated that the polyadenylation site is located 11,559 nt downstream of the stop codon of the ITSN1-l mRNA. Recently, additional splicing events affecting ITSN1 transcripts were reported, but full-length transcriptional isoforms with different combinations of alternatively spliced exons remained unknown. Here we report the identification of fifteen novel transcriptional isoforms of the human ITSN1 gene with full-length coding sequences that are the result of different combinations of the alternatively spliced exons 5, 6/6', 20, 23, 25, 26, 26a and 35. The isoforms identified differ in domain organization and expression level in different tissues and more likely contribute to the modulation of many complex protein interactions in which ITSN1 participates.


Subject(s)
Adaptor Proteins, Vesicular Transport/chemistry , Adaptor Proteins, Vesicular Transport/genetics , Gene Expression Profiling , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Base Sequence , Cloning, Molecular , Gene Expression Regulation , Genome, Human/genetics , Humans , Mice , Molecular Sequence Data , Neurons/metabolism , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription, Genetic
18.
Cell Signal ; 21(5): 753-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19166927

ABSTRACT

Intersectin 1 (ITSN1) is an adaptor protein involved in clathrin-mediated endocytosis, apoptosis, signal transduction and cytoskeleton organization. Here, we show that ITSN1 forms a complex with adaptor protein Ruk/CIN85, implicated in downregulation of receptor tyrosine kinases. The interaction is mediated by the SH3A domain of ITSN1 and the third or fourth proline-rich blocks of Ruk/CIN85, and does not depend on epidermal growth factor stimulation, suggesting a constitutive association of ITSN1 with Ruk/CIN85. Moreover, both proteins colocalize in MCF-7 cells with their common binding partner, the ubiquitin ligase c-Cbl. The possible biological role of the interaction between ITSN1 and Ruk/CIN85 is discussed.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Cell Line , Clathrin/metabolism , Down-Regulation , Epidermal Growth Factor/metabolism , ErbB Receptors/metabolism , Humans , Proline-Rich Protein Domains/physiology , Proto-Oncogene Proteins c-cbl/metabolism , src Homology Domains/physiology
19.
Biochem Biophys Res Commun ; 372(4): 929-34, 2008 Aug 08.
Article in English | MEDLINE | ID: mdl-18539136

ABSTRACT

Intersectin 1 (ITSN1) is a conserved adaptor protein implicated in endocytosis, regulation of actin cytoskeleton rearrangements and mitogenic signaling. Its expression is characterized by multiple alternative splicing. Here we show neuron-specific expression of ITSN1 isoforms containing exon 20, which encodes five amino acid residues in the first SH3 domain (SH3A). In vitro binding experiments demonstrated that inclusion of exon 20 changes the binding properties of the SH3A domain. Endocytic proteins dynamin 1 and synaptojanin 1 as well as GTPase-activating protein CdGAP bound the neuron-specific variant of the SH3A domain with higher affinity than ubiquitously expressed SH3A. In contrast, SOS1, a guanine nucleotide exchange factor for Ras, and the ubiquitin ligase Cbl mainly interact with the ubiquitously expressed isoform. These results demonstrate that alternative splicing leads to the formation of two pools of ITSN1 with potentially different properties in neurons, affecting ITSN1 function as adaptor protein.


Subject(s)
Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Alternative Splicing , Neurons/metabolism , src Homology Domains , Amino Acid Sequence , Animals , Cell Line , Dynamin I/metabolism , Exons , GTPase-Activating Proteins/metabolism , Humans , Mice , Molecular Sequence Data , Phosphoproteins/metabolism , Phosphoric Monoester Hydrolases/metabolism , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Rats
20.
Gene ; 364: 90-8, 2005 Dec 30.
Article in English | MEDLINE | ID: mdl-16310977

ABSTRACT

Down syndrome, trisomy of human chromosome 21, is the most common genetic cause of intellectual disability. Correlating the increased expression, due to gene dosage, of the >300 genes encoded by chromosome 21 with specific phenotypic features is a goal that becomes more feasible with the increasing availability of large scale functional, expression and evolutionary data. These data are dispersed among diverse databases, and the variety of formats and locations, plus their often rapid growth, makes access and assimilation a daunting task. To aid the Down syndrome and chromosome 21 community, and researchers interested in the study of any chromosome 21 gene or ortholog, we are developing a comprehensive chromosome 21-specific database with the goals of (i) data consolidation, (ii) accuracy and completeness through expert curation, and (iii) facilitation of novel hypothesis generation. Here we describe the current status of data collection and the immediate future plans for this first human chromosome-specific database.


Subject(s)
Chromosomes, Human, Pair 21 , Down Syndrome/genetics , Base Sequence , Chromosome Mapping , Chromosomes, Human, Pair 21/chemistry , Databases, Nucleic Acid , Humans , Internet , Molecular Sequence Data , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...