Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
J Infect Dis ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682164

ABSTRACT

BACKGROUND: Nipah virus (NiV), a highly lethal virus in humans, circulates in Pteropus bats throughout South and Southeast Asia. Difficulty in obtaining viral genomes from bats means we have a poor understanding of NiV diversity. METHODS: We develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N=257, 175 from bats, 73 from humans) from six countries over 22 years (1999-2020). We divide the four major NiV sublineages into 15 genetic clusters. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate the presence and the average size of genetic clusters per area. RESULTS: We find that, within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at areas of 1500-2000km2. We estimate that each genetic cluster occupies an average area of 1.3million km2 (95%CI: 0.6-2.3 million), with 14 clusters in an area of 100,000km2 (95%CI: 6-24). In the few sites in Bangladesh and Cambodia where genomic surveillance has been concentrated, we estimate that most clusters have been identified, but only ∼15% of overall NiV diversity has been uncovered. CONCLUSION: Our findings are consistent with entrenched co-circulation of distinct lineages, even within roosts, coupled with slow migration over larger spatial scales.

2.
medRxiv ; 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37502973

ABSTRACT

Nipah virus (NiV), a highly lethal virus in humans, circulates silently in Pteropus bats throughout South and Southeast Asia. Difficulty in obtaining genomes from bats means we have a poor understanding of NiV diversity, including how many lineages circulate within a roost and the spread of NiV over increasing spatial scales. Here we develop phylogenetic approaches applied to the most comprehensive collection of genomes to date (N=257, 175 from bats, 73 from humans) from six countries over 22 years (1999-2020). In Bangladesh, where most human infections occur, we find evidence of increased spillover risk from one of the two co-circulating sublineages. We divide the four major NiV sublineages into 15 genetic clusters (emerged 20-44 years ago). Within any bat roost, there are an average of 2.4 co-circulating genetic clusters, rising to 5.5 clusters at areas of 1,500-2,000 km2. Using Approximate Bayesian Computation fit to a spatial signature of viral diversity, we estimate that each genetic cluster occupies an average area of 1.3 million km2 (95%CI: 0.6-2.3 million), with 14 clusters in an area of 100,000 km2 (95%CI: 6-24). In the few sites in Bangladesh and Cambodia where genomic surveillance has been concentrated, we estimate that most of the genetic clusters have been identified, but only ~15% of overall NiV diversity has been uncovered. Our findings are consistent with entrenched co-circulation of distinct lineages, even within individual roosts, coupled with slow migration over larger spatial scales.

3.
PLOS Glob Public Health ; 3(6): e0001457, 2023.
Article in English | MEDLINE | ID: mdl-37289736

ABSTRACT

Although seroprevalence studies have demonstrated the wide circulation of SARS-COV-2 in African countries, the impact on population health in these settings is still poorly understood. Using representative samples of the general population, we evaluated retrospective mortality and seroprevalence of anti-SARS-CoV-2 antibodies in Lubumbashi and Abidjan. The studies included retrospective mortality surveys and nested anti-SARS-CoV-2 antibody prevalence surveys. In Lubumbashi the study took place during April-May 2021 and in Abidjan the survey was implemented in two phases: July-August 2021 and October-November 2021. Crude mortality rates were stratified between pre-pandemic and pandemic periods and further investigated by age group and COVID waves. Anti-SARS-CoV-2 seroprevalence was quantified by rapid diagnostic testing (RDT) and laboratory-based testing (ELISA in Lubumbashi and ECLIA in Abidjan). In Lubumbashi, the crude mortality rate (CMR) increased from 0.08 deaths per 10 000 persons per day (pre-pandemic) to 0.20 deaths per 10 000 persons per day (pandemic period). Increases were particularly pronounced among <5 years old. In Abidjan, no overall increase was observed during the pandemic period (pre-pandemic: 0.05 deaths per 10 000 persons per day; pandemic: 0.07 deaths per 10 000 persons per day). However, an increase was observed during the third wave (0.11 deaths per 10 000 persons per day). The estimated seroprevalence in Lubumbashi was 15.7% (RDT) and 43.2% (laboratory-based). In Abidjan, the estimated seroprevalence was 17.4% (RDT) and 72.9% (laboratory-based) during the first phase of the survey and 38.8% (RDT) and 82.2% (laboratory-based) during the second phase of the survey. Although circulation of SARS-CoV-2 seems to have been extensive in both settings, the public health impact varied. The increases, particularly among the youngest age group, suggest indirect impacts of COVID and the pandemic on population health. The seroprevalence results confirmed substantial underdetection of cases through the national surveillance systems.

4.
Nat Commun ; 13(1): 7280, 2022 11 26.
Article in English | MEDLINE | ID: mdl-36435844

ABSTRACT

Enterovirus A71 (EV-A71)-related hand, foot, and mouth disease (HFMD) imposes a substantial clinical burden in the Asia Pacific region. To inform policy on the introduction of the EV-A71 vaccine into the National Immunization Programme, we investigated the seroepidemiological characteristics of EV-A71 in two prospective cohorts of children in southern China conducted between 2013 and 2018. Our results show that maternal antibody titres declined rapidly in neonates, with over half becoming susceptible to EV-A71 at 1 month of age. Between 6 months and 2 years of age, over 80% of study participants were susceptible, while one third remained susceptible at 5 years old. The highest incidence of EV-A71 infections was observed in children aged 5-6 months. Our findings support EV-A71 vaccination before 6 months for birth cohorts in southern China, potentially with a one-time catch-up vaccination for children 6 months-5 years old. More regionally representative longitudinal seroepidemiological studies are needed to further validate these findings.


Subject(s)
Enterovirus A, Human , Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Child , Infant, Newborn , Humans , Child, Preschool , Hand, Foot and Mouth Disease/epidemiology , Prospective Studies , Seroepidemiologic Studies , Enterovirus Infections/epidemiology , China/epidemiology , Antigens, Viral
5.
PLoS Biol ; 20(8): e3001736, 2022 08.
Article in English | MEDLINE | ID: mdl-35969599

ABSTRACT

During outbreaks, the lack of diagnostic "gold standard" can mask the true burden of infection in the population and hamper the allocation of resources required for control. Here, we present an analytical framework to evaluate and optimize the use of diagnostics when multiple yet imperfect diagnostic tests are available. We apply it to laboratory results of 2,136 samples, analyzed with 3 diagnostic tests (based on up to 7 diagnostic outcomes), collected during the 2017 pneumonic (PP) and bubonic plague (BP) outbreak in Madagascar, which was unprecedented both in the number of notified cases, clinical presentation, and spatial distribution. The extent of these outbreaks has however remained unclear due to nonoptimal assays. Using latent class methods, we estimate that 7% to 15% of notified cases were Yersinia pestis-infected. Overreporting was highest during the peak of the outbreak and lowest in the rural settings endemic to Y. pestis. Molecular biology methods offered the best compromise between sensitivity and specificity. The specificity of the rapid diagnostic test was relatively low (PP: 82%, BP: 85%), particularly for use in contexts with large quantities of misclassified cases. Comparison with data from a subsequent seasonal Y. pestis outbreak in 2018 reveal better test performance (BP: specificity 99%, sensitivity: 91%), indicating that factors related to the response to a large, explosive outbreak may well have affected test performance. We used our framework to optimize the case classification and derive consolidated epidemic trends. Our approach may help reduce uncertainties in other outbreaks where diagnostics are imperfect.


Subject(s)
Epidemics , Plague , Yersinia pestis , Disease Outbreaks , Humans , Madagascar/epidemiology , Plague/diagnosis , Plague/epidemiology
6.
Clin Infect Dis ; 74(4): 695-702, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34244722

ABSTRACT

BACKGROUND: Pneumonic plague (PP), caused by Yersinia pestis, is the most feared clinical form of plague due to its rapid lethality and potential to cause outbreaks. PP outbreaks are now rare due to antimicrobial therapy. METHODS: A PP outbreak in Madagascar involving transmission of a Y. pestis strain resistant to streptomycin, the current recommended first-line treatment in Madagascar, was retrospectively characterized using epidemiology, clinical diagnostics, molecular characterization, and animal studies. RESULTS: The outbreak occurred in February 2013 in the Faratsiho district of Madagascar and involved 22 cases, including 3 untreated fatalities. The 19 other cases participated in funeral practices for the fatal cases and fully recovered after combination antimicrobial therapy: intramuscular streptomycin followed by oral co-trimoxazole. The Y. pestis strain that circulated during this outbreak is resistant to streptomycin resulting from a spontaneous point mutation in the 30S ribosomal protein S12 (rpsL) gene. This same mutation causes streptomycin resistance in 2 unrelated Y. pestis strains, one isolated from a fatal PP case in a different region of Madagascar in 1987 and another isolated from a fatal PP case in China in 1996, documenting this mutation has occurred independently at least 3 times in Y. pestis. Laboratory experiments revealed this mutation has no detectable impact on fitness or virulence, and revertants to wild-type are rare in other species containing it, suggesting Y. pestis strains containing it could persist in the environment. CONCLUSIONS: Unique antimicrobial resistant (AMR) strains of Y. pestis continue to arise in Madagascar and can be transmitted during PP outbreaks.


Subject(s)
Plague , Yersinia pestis , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Disease Outbreaks , Plague/drug therapy , Plague/epidemiology , Retrospective Studies , Yersinia pestis/genetics
7.
Vaccine ; 39(39): 5600-5606, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34426025

ABSTRACT

BACKGROUND: Nipah virus (NiV) is an emerging, bat-borne pathogen that can be transmitted from person-to-person. Vaccines are currently being developed for NiV, and studies have been funded to evaluate their safety and immunogenicity. An important unanswered question is whether it will be possible to evaluate the efficacy of vaccine candidates in phase III clinical trials in a context where spillovers from the zoonotic reservoir are infrequent and associated with small outbreaks. The objective of this study was to investigate the feasibility of conducting a phase III vaccine trial in Bangladesh, the only country regularly reporting NiV cases. METHODS: We used simulations based on previously observed NiV cases from Bangladesh, an assumed vaccine efficacy of 90% and other NiV vaccine target characteristics, to compare three vaccination study designs: (i) cluster randomized ring vaccination, (ii) cluster randomized mass vaccination, and (iii) an observational case-control study design. RESULTS: The simulations showed that, assuming a ramp-up period of 10 days and a mean hospitalization delay of 4 days,a cluster-randomized ring vaccination trial would require 516 years and over 163,000 vaccine doses to run a ring vaccination trial under current epidemic conditions. A cluster-randomized mass vaccination trial in the two most affected districts would take 43 years and 1.83 million vaccine doses. An observational case-control design in these two districts would require seven years and 2.5 million vaccine doses. DISCUSSION: Without a change in the epidemiology of NiV, ring vaccination or mass vaccination trials are unlikely to be completed within a reasonable time window. In this light, the remaining options are: (i) not conducting a phase III trial until the epidemiology of NiV changes, (ii) identifying alternative ways to licensure such as observational studies or controlled studies in animals such as in the US Food and Drug Administration's (FDA) Animal Rule.


Subject(s)
Nipah Virus , Vaccines , Animals , Bangladesh/epidemiology , Case-Control Studies , Disease Outbreaks/prevention & control , Feasibility Studies , Humans
8.
Sci Afr ; 12: e00802, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34095639

ABSTRACT

Official case counts suggest Africa has not seen the expected burden of COVID-19 as predicted by international health agencies, and the proportion of asymptomatic patients, disease severity, and mortality burden differ significantly in Africa from what has been observed elsewhere. Testing for SARS-CoV-2 was extremely limited early in the pandemic and likely led to under-reporting of cases leaving important gaps in our understanding of transmission and disease characteristics in the African context. SARS-CoV-2 antibody prevalence and serologic response data could help quantify the burden of COVID-19 disease in Africa to address this knowledge gap and guide future outbreak response, adapted to the local context. However, such data are widely lacking in Africa. We conducted a cross-sectional seroprevalence survey among 1,192 individuals seeking COVID-19 screening and testing in central Cameroon using the Innovita antibody-based rapid diagnostic. Overall immunoglobulin prevalence was 32%, IgM prevalence was 20%, and IgG prevalence was 24%. IgM positivity gradually increased, peaking around symptom day 20. IgG positivity was similar, gradually increasing over the first 10 days of symptoms, then increasing rapidly to 30 days and beyond. These findings highlight the importance of diagnostic testing and asymptomatic SARS-CoV-2 transmission in Cameroon, which likely resulted in artificially low case counts. Rapid antibody tests are a useful diagnostic modality for seroprevalence surveys and infection diagnosis starting 5-7 days after symptom onset. These results represent the first step towards better understanding the SARS-CoV-2 immunological response in African populations.

9.
Lancet Infect Dis ; 21(8): 1089-1096, 2021 08.
Article in English | MEDLINE | ID: mdl-33773618

ABSTRACT

BACKGROUND: Real-time PCR is recommended to detect SARS-CoV-2 infection. However, PCR availability is restricted in most countries. Rapid diagnostic tests are considered acceptable alternatives, but data are lacking on their performance. We assessed the performance of four antibody-based rapid diagnostic tests and one antigen-based rapid diagnostic test for detecting SARS-CoV-2 infection in the community in Cameroon. METHODS: In this clinical, prospective, diagnostic accuracy study, we enrolled individuals aged at least 21 years who were either symptomatic and suspected of having COVID-19 or asymptomatic and presented for screening. We tested peripheral blood for SARS-CoV-2 antibodies using the Innovita (Biological Technology; Beijing, China), Wondfo (Guangzhou Wondfo Biotech; Guangzhou, China), SD Biosensor (SD Biosensor; Gyeonggi-do, South Korea), and Runkun tests (Runkun Pharmaceutical; Hunan, China), and nasopharyngeal swabs for SARS-CoV-2 antigen using the SD Biosensor test. Antigen rapid diagnostic tests were compared with Abbott PCR testing (Abbott; Abbott Park, IL, USA), and antibody rapid diagnostic tests were compared with Biomerieux immunoassays (Biomerieux; Marcy l'Etoile, France). We retrospectively tested two diagnostic algorithms that incorporated rapid diagnostic tests for symptomatic and asymptomatic patients using simulation modelling. FINDINGS: 1195 participants were enrolled in the study. 347 (29%) tested SARS-CoV-2 PCR-positive, 223 (19%) rapid diagnostic test antigen-positive, and 478 (40%) rapid diagnostic test antibody-positive. Antigen-based rapid diagnostic test sensitivity was 80·0% (95% CI 71·0-88·0) in the first 7 days after symptom onset, but antibody-based rapid diagnostic tests had only 26·8% sensitivity (18·3-36·8). Antibody rapid diagnostic test sensitivity increased to 76·4% (70·1-82·0) 14 days after symptom onset. Among asymptomatic participants, the sensitivity of antigen-based and antibody-based rapid diagnostic tests were 37·0% (27·0-48·0) and 50·7% (42·2-59·1), respectively. Cohen's κ showed substantial agreement between Wondfo antibody rapid diagnostic test and gold-standard ELISA (κ=0·76; sensitivity 0·98) and between Biosensor and ELISA (κ=0·60; sensitivity 0·94). Innovita (κ=0·47; sensitivity 0·93) and Runkun (κ=0·43; sensitivity 0·76) showed moderate agreement. An antigen-based retrospective algorithm applied to symptomatic patients showed 94·0% sensitivity and 91·0% specificity in the first 7 days after symptom onset. For asymptomatic participants, the algorithm showed a sensitivity of 34% (95% CI 23·0-44·0) and a specificity of 92·0% (88·0-96·0). INTERPRETATION: Rapid diagnostic tests had good overall sensitivity for diagnosing SARS-CoV-2 infection. Rapid diagnostic tests could be incorporated into efficient testing algorithms as an alternative to PCR to decrease diagnostic delays and onward viral transmission. FUNDING: Médecins Sans Frontières WACA and Médecins Sans Frontières OCG. TRANSLATIONS: For the French and Spanish translations of the abstract see Supplementary Materials section.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/analysis , Asymptomatic Infections , COVID-19 Serological Testing , COVID-19/diagnosis , SARS-CoV-2/immunology , Feasibility Studies , Humans , Prospective Studies , Sensitivity and Specificity
10.
Lancet Public Health ; 6(4): e202-e209, 2021 04.
Article in English | MEDLINE | ID: mdl-33556328

ABSTRACT

BACKGROUND: During the COVID-19 lockdown period from March 17 to May 11, 2020, French authorities in Paris and its suburbs relocated people experiencing recurrent homelessness to emergency shelters, hotels, and large venues. A serological survey was done at some of these locations to assess the COVID-19 exposure prevalence in this group. METHODS: We did a cross-sectional seroprevalence study at food distribution sites, emergency shelters, and workers' residences that were provided medical services by Médecins Sans Frontières in Paris and Seine-Saint-Denis in the Ile-de-France region. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody seropositivity was detected by Luciferase-Linked Immunosorbent Assay and Pseudo Neutralization Test. Sociodemographic and exposure related information was collected via a verbal questionnaire to analyse risk factors and associations with various COVID-19 symptoms. FINDINGS: Between June 23 and July 2, 2020, 426 (52%) of 818 individuals recruited tested positive in 14 sites. Seroprevalence varied significantly by type of recruitment site (χ2 p<0·0001), being highest among those living in workers' residences (88·7%, 95% CI 81·8-93·2), followed by emergency shelters (50·5%, 46·3-54·7), and food distribution sites (27·8%, 20·8-35·7). More than two thirds of COVID-19 seropositive individuals (68%, 95% CI 64·2-72·2; 291 of 426) did not report any symptoms during the recall period. COVID-19 seropositivity was strongly associated with overcrowding (medium density: adjusted odds ratio [aOR] 2·7, 95% CI 1·5-5·1, p=0·0020; high density: aOR 3·4, 1·7-6·9, p<0·0001). INTERPRETATION: These results show high exposure to SARS-CoV-2 with important variations between those at different study sites. Living in crowded conditions was the strongest factor associated with exposure level. This study underscores the importance of providing safe, uncrowded accommodation, alongside adequate testing and public health information. FUNDING: Médecins Sans Frontières, Epicentre, Institut Pasteur's URGENCE nouveau coronavirus fund, Total Foundation.


Subject(s)
COVID-19/epidemiology , Environmental Exposure/statistics & numerical data , Ill-Housed Persons/statistics & numerical data , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Paris/epidemiology , Risk Factors , Seroepidemiologic Studies
11.
PLoS Negl Trop Dis ; 15(2): e0009024, 2021 02.
Article in English | MEDLINE | ID: mdl-33571202

ABSTRACT

Global urbanization is leading to an inexorable spread of several major diseases that need to be stemmed. Dengue is one of these major diseases spreading in cities today, with its principal mosquito vector superbly adapted to the urban environment. Current mosquito control strategies are proving inadequate, especially in the face of such urbanisation and novel, evidence-based targeted approaches are needed. Through combined epidemiological and entomological approaches, we aimed to identify a novel sanitation strategy to alleviate the burden of dengue through how the dengue virus spreads through the community. We combined surveillance case mapping, prospective serological studies, year-round mosquito surveys, socio-economic and Knowledge Attitudes and Practices surveys across Delhi. We identified lack of access to tap water (≤98%) as an important risk factor for dengue virus IgG sero-positivity (adjusted Odds Ratio 4.69, 95% C.I. 2.06-10.67) and not poverty per se. Wealthier districts had a higher dengue burden despite lower mosquito densities than the Intermediary income communities (adjusted Odds Ratio 2.92, 95% C.I. 1.26-6.72). This probably reflects dengue being introduced by people travelling from poorer areas to work in wealthier houses. These poorer, high density areas, where temperatures are also warmer, also had dengue cases during the winter. Control strategies based on improved access to a reliable supply of tap water plus focal intervention in intra-urban heat islands prior to the dengue season could not only lead to a reduction in mosquito abundance but also eliminate the reservoir of dengue virus clearly circulating at low levels in winter in socio-economically disadvantaged areas.


Subject(s)
Dengue/epidemiology , Cities/epidemiology , Dengue Virus , Humans , India/epidemiology , Mosquito Control , Retrospective Studies , Risk Factors , Socioeconomic Factors , Urbanization
12.
J Infect Dis ; 221(Suppl 4): S363-S369, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32392322

ABSTRACT

It is of uttermost importance that the global health community develops the surveillance capability to effectively monitor emerging zoonotic pathogens that constitute a major and evolving threat for human health. In this study, we propose a comprehensive framework to measure changes in (1) spillover risk, (2) interhuman transmission, and (3) morbidity/mortality associated with infections based on 6 epidemiological key indicators derived from routine surveillance. We demonstrate the indicators' value for the retrospective or real-time assessment of changes in transmission and epidemiological characteristics using data collected through a long-standing, systematic, hospital-based surveillance system for Nipah virus in Bangladesh. We show that although interhuman transmission and morbidity/mortality indicators were stable, the number and geographic extent of spillovers varied significantly over time. This combination of systematic surveillance and active tracking of transmission and epidemiological indicators should be applied to other high-risk emerging pathogens to prevent public health emergencies.


Subject(s)
Communicable Diseases, Emerging/virology , Henipavirus Infections/transmission , Henipavirus Infections/virology , Nipah Virus/isolation & purification , Animals , Bangladesh/epidemiology , Cluster Analysis , Henipavirus Infections/epidemiology , Humans , Models, Biological , Risk Factors , Zoonoses
13.
J Infect Dis ; 222(3): 438-442, 2020 07 06.
Article in English | MEDLINE | ID: mdl-32115627

ABSTRACT

Contact patterns play a key role in disease transmission, and variation in contacts during the course of illness can influence transmission, particularly when accompanied by changes in host infectiousness. We used surveys among 1642 contacts of 94 Nipah virus case patients in Bangladesh to determine how contact patterns (physical and with bodily fluids) changed as disease progressed in severity. The number of contacts increased with severity and, for case patients who died, peaked on the day of death. Given transmission has only been observed among fatal cases of Nipah virus infection, our findings suggest that changes in contact patterns during illness contribute to risk of infection.


Subject(s)
Body Fluids/virology , Contact Tracing/statistics & numerical data , Henipavirus Infections/transmission , Nipah Virus , Social Behavior , Adolescent , Adult , Bangladesh/epidemiology , Disease Progression , Disease Transmission, Infectious/prevention & control , Female , Henipavirus Infections/epidemiology , Henipavirus Infections/prevention & control , Humans , Male , Middle Aged , Risk Factors , Young Adult
14.
Viruses ; 12(2)2020 02 10.
Article in English | MEDLINE | ID: mdl-32050663

ABSTRACT

In Senegal, chikungunya virus (CHIKV) is maintained in a sylvatic cycle and causes sporadic cases or small outbreaks in rural areas. However, little is known about the influence of the environment on its transmission. To address the question, 120 villages were randomly selected in the Kedougou region of southeastern Senegal. In each selected village, 10 persons by randomly selected household were sampled and tested for specific anti-CHIKV IgG antibodies by ELISA. We investigated the association of CHIKV seroprevalence with environmental variables using logistic regression analysis and the spatial correlation of village seroprevalence based on semivariogram analysis. Fifty-four percent (51%-57%) of individuals sampled during the survey tested positive for CHIKV-specific IgG. CHIKV seroprevalence was significantly higher in populations living close to forested areas (Normalized Difference Vegetation Index (NDVI), Odds Ratio (OR) = 1.90 (1.42-2.57)), and was negatively associated with population density (OR = 0.76 (0.69-0.84)). In contrast, in gold mining sites where population density was >400 people per km2, seroprevalence peaked significantly among adults (46% (27%-67%)) compared to all other individuals (20% (12%-31%)). However, traditional gold mining activities significantly modify the transmission dynamic of CHIKV, leading to a potential increase of the risk of human exposition in the region.


Subject(s)
Antibodies, Viral/blood , Chikungunya Fever/transmission , Environment , Population Density , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Chikungunya Fever/epidemiology , Chikungunya Fever/immunology , Child , Child, Preschool , Female , Forests , Humans , Immunoglobulin G/blood , Infant , Male , Middle Aged , Mining , Rural Population/statistics & numerical data , Senegal/epidemiology , Seroepidemiologic Studies , Young Adult
15.
J Infect ; 80(3): 310-319, 2020 03.
Article in English | MEDLINE | ID: mdl-31954742

ABSTRACT

OBJECTIVES: The long-term dynamics of antibody responses in patients with influenza A(H7N9) virus infection are not well understood. METHODS: We conducted a longitudinal serological follow-up study in patients who were hospitalized with A(H7N9) virus infection, during 2013-2018. A(H7N9) virus-specific antibody responses were assessed by hemagglutination inhibition (HAI) and neutralization (NT) assays. A random intercept model was used to fit a curve to HAI antibody responses over time. HAI antibody responses were compared by clinical severity. RESULTS: Of 67 patients with A(H7N9) virus infection, HAI antibody titers reached 40 on average 11 days after illness onset and peaked at a titer of 290 after three months, and average titers of ≥80 and ≥40 were present until 11 months and 22 months respectively. HAI antibody responses were significantly higher in patients who experienced severe disease, including respiratory failure and acute respiratory distress syndrome, compared with patients who experienced less severe illness. CONCLUSIONS: Patients with A(H7N9) virus infection who survived severe disease mounted higher antibody responses that persisted for longer periods compared with those that experienced moderate disease. Studies of convalescent plasma treatment for A(H7N9) patients should consider collection of donor plasma from survivors of severe disease between 1 and 11 months after illness onset.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Antibodies, Viral , Antibody Formation , Follow-Up Studies , Humans , Kinetics
16.
PLoS Negl Trop Dis ; 14(1): e0007953, 2020 01.
Article in English | MEDLINE | ID: mdl-31895933

ABSTRACT

BACKGROUND: West Nile virus (WNV) transmission was much greater in 2018 than in previous seasons in Europe. Focusing on Emilia-Romagna region (northern Italy), we analyzed detailed entomological and epidemiological data collected in 2013-2018 to quantitatively assess environmental drivers of transmission and explore hypotheses to better understand why the 2018 epidemiological season was substantially different than the previous seasons. In particular, in 2018 WNV was detected at least two weeks before the observed circulation in 2013-2017 and in a larger number of mosquito pools. Transmission resulted in 100 neuroinvasive human cases in the region, more than the total number of cases recorded between 2013 and 2017. METHODOLOGY: We used temperature-driven mathematical models calibrated through a Bayesian approach to simulate mosquito population dynamics and WNV infection rates in the avian population. We then estimated the human transmission risk as the probability, for a person living in the study area, of being bitten by an infectious mosquito in a given week. Finally, we translated such risk into reported WNV human infections. PRINCIPAL FINDINGS: The estimated prevalence of WNV in the mosquito and avian populations were significantly higher in 2018 with respect to 2013-2017 seasons, especially in the eastern part of the region. Furthermore, peak avian prevalence was estimated to have occurred earlier, corresponding to a steeper decline towards the end of summer. The high mosquito prevalence resulted in a much greater predicted risk for human transmission in 2018, which was estimated to be up to eight times higher than previous seasons. We hypothesized, on the basis of our modelling results, that such greater WNV circulation might be partially explained by exceptionally high spring temperatures, which have likely helped to amplify WNV transmission at the beginning of the 2018 season.


Subject(s)
Culex/virology , Temperature , West Nile Fever/epidemiology , Animals , Birds/virology , Female , Humans , Incidence , Insect Bites and Stings/epidemiology , Italy/epidemiology , Models, Theoretical , Mosquito Vectors/virology , Seasons , West Nile Fever/transmission , West Nile virus/isolation & purification
17.
Sci Rep ; 9(1): 7385, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31089148

ABSTRACT

Since its emergence in 2012, 2,260 cases and 803 deaths due to Middle East respiratory syndrome coronavirus (MERS-CoV) have been reported to the World Health Organization. Most cases were due to transmission in healthcare settings, sometimes causing large outbreaks. We analyzed epidemiologic and clinical data of laboratory-confirmed MERS-CoV cases from eleven healthcare-associated outbreaks in the Kingdom of Saudi Arabia and the Republic of Korea between 2015-2017. We quantified key epidemiological differences between outbreaks. Twenty-five percent (n = 105/422) of MERS cases who acquired infection in a hospital setting were healthcare personnel. In multivariate analyses, age ≥65 (OR 4.8, 95%CI: 2.6-8.7) and the presence of underlying comorbidities (OR: 2.7, 95% CI: 1.3-5.7) were associated with increased mortality whereas working as healthcare personnel was protective (OR 0.07, 95% CI: 0.01-0.34). At the start of these outbreaks, the reproduction number ranged from 1.0 to 5.7; it dropped below 1 within 2 to 6 weeks. This study provides a comprehensive characterization of MERS HCA-outbreaks. Our results highlight heterogeneities in the epidemiological profile of healthcare-associated outbreaks. The limitations of our study stress the urgent need for standardized data collection for high-threat respiratory pathogens, such as MERS-CoV.


Subject(s)
Coronavirus Infections/epidemiology , Cross Infection/epidemiology , Disease Outbreaks/statistics & numerical data , Hospitals/statistics & numerical data , Middle East Respiratory Syndrome Coronavirus/isolation & purification , Adult , Age Factors , Aged , Comorbidity , Coronavirus Infections/transmission , Coronavirus Infections/virology , Cross Infection/transmission , Cross Infection/virology , Disease Outbreaks/history , Disease Outbreaks/prevention & control , Female , Health Personnel/statistics & numerical data , History, 21st Century , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Infectious Disease Transmission, Patient-to-Professional/statistics & numerical data , Infectious Disease Transmission, Professional-to-Patient/prevention & control , Infectious Disease Transmission, Professional-to-Patient/statistics & numerical data , Male , Middle Aged , Republic of Korea/epidemiology , Risk Factors , Saudi Arabia/epidemiology
18.
N Engl J Med ; 380(19): 1804-1814, 2019 05 09.
Article in English | MEDLINE | ID: mdl-31067370

ABSTRACT

BACKGROUND: Nipah virus is a highly virulent zoonotic pathogen that can be transmitted between humans. Understanding the dynamics of person-to-person transmission is key to designing effective interventions. METHODS: We used data from all Nipah virus cases identified during outbreak investigations in Bangladesh from April 2001 through April 2014 to investigate case-patient characteristics associated with onward transmission and factors associated with the risk of infection among patient contacts. RESULTS: Of 248 Nipah virus cases identified, 82 were caused by person-to-person transmission, corresponding to a reproduction number (i.e., the average number of secondary cases per case patient) of 0.33 (95% confidence interval [CI], 0.19 to 0.59). The predicted reproduction number increased with the case patient's age and was highest among patients 45 years of age or older who had difficulty breathing (1.1; 95% CI, 0.4 to 3.2). Case patients who did not have difficulty breathing infected 0.05 times as many contacts (95% CI, 0.01 to 0.3) as other case patients did. Serologic testing of 1863 asymptomatic contacts revealed no infections. Spouses of case patients were more often infected (8 of 56 [14%]) than other close family members (7 of 547 [1.3%]) or other contacts (18 of 1996 [0.9%]). The risk of infection increased with increased duration of exposure of the contacts (adjusted odds ratio for exposure of >48 hours vs. ≤1 hour, 13; 95% CI, 2.6 to 62) and with exposure to body fluids (adjusted odds ratio, 4.3; 95% CI, 1.6 to 11). CONCLUSIONS: Increasing age and respiratory symptoms were indicators of infectivity of Nipah virus. Interventions to control person-to-person transmission should aim to reduce exposure to body fluids. (Funded by the National Institutes of Health and others.).


Subject(s)
Henipavirus Infections/transmission , Nipah Virus , Adolescent , Adult , Age Factors , Animals , Bangladesh/epidemiology , Body Fluids/virology , Child , Contact Tracing , Disease Transmission, Infectious/prevention & control , Female , Henipavirus Infections/epidemiology , Henipavirus Infections/prevention & control , Humans , Male , Middle Aged , Risk Factors , Young Adult , Zoonoses/transmission
19.
Lancet Infect Dis ; 19(5): 537-545, 2019 05.
Article in English | MEDLINE | ID: mdl-30930106

ABSTRACT

BACKGROUND: Madagascar accounts for 75% of global plague cases reported to WHO, with an annual incidence of 200-700 suspected cases (mainly bubonic plague). In 2017, a pneumonic plague epidemic of unusual size occurred. The extent of this epidemic provides a unique opportunity to better understand the epidemiology of pneumonic plagues, particularly in urban settings. METHODS: Clinically suspected plague cases were notified to the Central Laboratory for Plague at Institut Pasteur de Madagascar (Antananarivo, Madagascar), where biological samples were tested. Based on cases recorded between Aug 1, and Nov 26, 2017, we assessed the epidemiological characteristics of this epidemic. Cases were classified as suspected, probable, or confirmed based on the results of three types of diagnostic tests (rapid diagnostic test, molecular methods, and culture) according to 2006 WHO recommendations. FINDINGS: 2414 clinically suspected plague cases were reported, including 1878 (78%) pneumonic plague cases, 395 (16%) bubonic plague cases, one (<1%) septicaemic case, and 140 (6%) cases with unspecified clinical form. 386 (21%) of 1878 notified pneumonic plague cases were probable and 32 (2%) were confirmed. 73 (18%) of 395 notified bubonic plague cases were probable and 66 (17%) were confirmed. The case fatality ratio was higher among confirmed cases (eight [25%] of 32 cases) than probable (27 [8%] of 360 cases) or suspected pneumonic plague cases (74 [5%] of 1358 cases) and a similar trend was seen for bubonic plague cases (16 [24%] of 66 confirmed cases, four [6%] of 68 probable cases, and six [2%] of 243 suspected cases). 351 (84%) of 418 confirmed or probable pneumonic plague cases were concentrated in Antananarivo, the capital city, and Toamasina, the main seaport. All 50 isolated Yersinia pestis strains were susceptible to the tested antibiotics. INTERPRETATION: This predominantly urban plague epidemic was characterised by a large number of notifications in two major urban areas and an unusually high proportion of pneumonic forms, with only 23% having one or more positive laboratory tests. Lessons about clinical and biological diagnosis, case definition, surveillance, and the logistical management of the response identified in this epidemic are crucial to improve the response to future plague outbreaks. FUNDING: US Agency for International Development, WHO, Institut Pasteur, US Department of Health and Human Services, Laboratoire d'Excellence Integrative Biology of Emerging Infectious Diseases, Models of Infectious Disease Agent Study of the National Institute of General Medical Sciences, AXA Research Fund, and the INCEPTION programme.


Subject(s)
Epidemics , Plague/epidemiology , Adolescent , Adult , Child , Child, Preschool , Cities/epidemiology , Female , Humans , Incidence , Infant , Infant, Newborn , Madagascar/epidemiology , Male , Middle Aged , Plague/diagnosis , Yersinia pestis/isolation & purification , Young Adult
20.
Trends Parasitol ; 35(5): 369-379, 2019 05.
Article in English | MEDLINE | ID: mdl-30738632

ABSTRACT

Mathematical models play an increasingly important role in our understanding of the transmission and control of infectious diseases. Here, we present concrete examples illustrating how mathematical models, paired with rigorous statistical methods, are used to parse data of different levels of detail and breadth and estimate key epidemiological parameters (e.g., transmission and its determinants, severity, impact of interventions, drivers of epidemic dynamics) even when these parameters are not directly measurable, when data are limited, and when the epidemic process is only partially observed. Finally, we assess the hurdles to be taken to increase availability and applicability of these approaches in an effort to ultimately enhance their public health impact.


Subject(s)
Epidemiologic Methods , Models, Theoretical , Parasitic Diseases/epidemiology , Parasitology/methods , Animals , Data Interpretation, Statistical , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...