Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Zoology (Jena) ; 147: 125930, 2021 08.
Article in English | MEDLINE | ID: mdl-34029885

ABSTRACT

The silent flight of owls is well known. It has served as role model for the designs of new airplane wings and ventilators. One of the structural features that underlies silent flight is the serrated leading edge of the wing that is mainly formed by the tenth primary flight feather (P10). We examined here how much the wings, the P10 feather and the serrations in different populations of barn owls reflect the intact situation. First, when the P10 feather molts, no or fewer serrations are present. Furthermore, damage to feathers and serrations may occur. Damage may be due to several factors like broken feather tips, lost rami, barbules, or broken tips of serrations. The latter may cause a narrowing of the outer vane of the P10 feather. We quantitatively assessed damage by counting the number of wings with missing or broken primary feathers, the number of wings with a narrowed outer vane of the P10 feather, and the number of serrations with reduced length. Considerable damage occurred on wings and feathers on both the macroscopic and microscopic levels. The observed damage most likely influences flight performance. More damage occurred in Galapagos barn owls than in North American and European barn owls. The Galapagos population may be more vulnerable than the other populations because it may at least temporarily be in a bad nutritional state and, thus, postpone molt.


Subject(s)
Feathers/injuries , Strigiformes , Wings, Animal/injuries , Animals , Databases, Factual , Predatory Behavior
2.
Article in English | MEDLINE | ID: mdl-32140774

ABSTRACT

Interaural time and level differences are important cues for sound localization. We wondered whether the broadband information contained in these two cues could fully explain the behavior of barn owls and responses of midbrain neurons in these birds. To tackle this problem, we developed a novel approach based on head-related transfer functions. These filters contain the complete information present at the eardrum. We selected positions in space characterized by equal broadband interaural time and level differences. Stimulation from such positions provides reduced information to the owl. We show that barn owls are able to discriminate between such positions. In many cases, but not all, the owls may have used spectral components of interaural level differences that exceeded the known behavioral resolution and variability for discrimination. Alternatively, the birds may have used template matching. Likewise, neurons in the optic tectum of the barn owl, a nucleus involved in sensorimotor integration, contained more information than is available in the broadband interaural time and level differences. Thus, these data show that more information is available and used by barn owls for sound localization than carried by broadband interaural time and level differences.


Subject(s)
Auditory Pathways/physiology , Head/physiology , Neurons/physiology , Sound Localization , Strigiformes/physiology , Visual Pathways/physiology , Acoustic Stimulation , Animals , Cues , Female , Male
3.
Article in English | MEDLINE | ID: mdl-29230544

ABSTRACT

We tested how well barn owls can discriminate objects of different sizes. This ability may be important for the owls when catching prey. We performed a quantitative experiment in the laboratory and trained owls in a task in which the owls had to discriminate whether two rhombi presented simultaneously on a computer monitor were of the same or of different sizes. We obtained full data sets with two experienced owls and one data point with a third owl. For objects being sufficiently larger than the spatial resolution of the barn owl, the angular threshold was related to object size, implying that the discrimination followed Weber's law. The range of Weber fractions we determined was between 0.026 and 0.09. For object sizes close to the spatial resolution, performance degraded. We conducted similar experiments with human subjects. Human thresholds showed the same dependence on object size, albeit down to smaller object sizes. Human performance resulted in a range of Weber fractions extending from 0.025 to 0.036. The differences between owls and humans could be explained by the much higher spatial acuity of humans compared with owls.


Subject(s)
Discrimination, Psychological , Size Perception , Strigiformes , Adult , Animals , Female , Humans , Male , Middle Aged , Psychophysics , Young Adult
4.
J Vis ; 9(7): 13, 2009 Jul 22.
Article in English | MEDLINE | ID: mdl-19761328

ABSTRACT

The eyes of barn owls (Tyto alba pratincola) display very little aberrations, and have thus excellent optical quality. In a series of behavioral experiments, we tested whether this presumably beneficial feature is also reflected at a perceptual level in this species. As fundamental indicators for visual performance, the spatial contrast sensitivity function (CSF) and grating acuity were measured in two barn owls with psychophysical techniques. Stimulus luminance was 2.7 cd/m(2). The CSF found here renders the typical band-limited, inverted U-shaped function, with a low maximum contrast sensitivity of 8-19 at a spatial frequency of 1 cyc/deg. Grating acuity was estimated from the CSF high frequency cut-off and yielded 3.0-3.7 cyc/deg. In a second experiment, in which contrast was held constant and spatial frequency was varied, grating acuity was measured directly (2.6-4.0 cyc/deg). These results put barn owls at the very low end of the visual acuity spectrum of birds, and demonstrate that visual resolution and sensitivity cannot be predicted by optical considerations alone.


Subject(s)
Contrast Sensitivity , Strigiformes/physiology , Vision, Ocular/physiology , Visual Acuity , Animals , Discrimination, Psychological , Male , Psychophysics , Space Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...