Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1393458, 2024.
Article in English | MEDLINE | ID: mdl-38606077

ABSTRACT

Silicon (Si) is a widely recognized beneficial element in plants. With the emergence of nanotechnology in agriculture, silicon nanoparticles (SiNPs) demonstrate promising applicability in sustainable agriculture. Particularly, the application of SiNPs has proven to be a high-efficiency and cost-effective strategy for protecting plant against various biotic and abiotic stresses such as insect pests, pathogen diseases, metal stress, drought stress, and salt stress. To date, rapid progress has been made in unveiling the multiple functions and related mechanisms of SiNPs in promoting the sustainability of agricultural production in the recent decade, while a comprehensive summary is still lacking. Here, the review provides an up-to-date overview of the synthesis, uptake and translocation, and application of SiNPs in alleviating stresses aiming for the reasonable usage of SiNPs in nano-enabled agriculture. The major points are listed as following: (1) SiNPs can be synthesized by using physical, chemical, and biological (green synthesis) approaches, while green synthesis using agricultural wastes as raw materials is more suitable for large-scale production and recycling agriculture. (2) The uptake and translocation of SiNPs in plants differs significantly from that of Si, which is determined by plant factors and the properties of SiNPs. (3) Under stressful conditions, SiNPs can regulate plant stress acclimation at morphological, physiological, and molecular levels as growth stimulator; as well as deliver pesticides and plant growth regulating chemicals as nanocarrier, thereby enhancing plant growth and yield. (4) Several key issues deserve further investigation including effective approaches of SiNPs synthesis and modification, molecular basis of SiNPs-induced plant stress resistance, and systematic effects of SiNPs on agricultural ecosystem.

2.
Front Plant Sci ; 14: 1265782, 2023.
Article in English | MEDLINE | ID: mdl-37705706

ABSTRACT

Beneficial effects of silicon (Si) on plants have primarily been studied in crop species under single stress. Moreover, nutrient acquisition-based responses to combination of biotic and abiotic stresses (a common situation in natural habitats) have rarely been reported, in particular in conjunction with soil amendments with Si. Pedunculate oak (Quercus robur L.), one of the ecologically and economically most important tree species in Europe, is facing a severe decline due to combined stresses, but also problems in assisted regeneration in nurseries. Here, we studied the effect of Si supply on the leaf nutriome, root traits and overall growth of 12-weeks-old oak seedlings exposed to abiotic stress [low phosphorus (P) supply], biotic stress (Phytophthora plurivora root infection), and their combination. The application of Si had the strongest ameliorative effect on growth, root health and root phenome under the most severe stress conditions (i.e., combination of P deficiency and P. plurivora root infection), where it differentially affected the uptake and leaf accumulation in 11 out of 13 analysed nutrients. Silicon supply tended to reverse the pattern of change of some, but not all, leaf nutrients affected by stresses: P, boron (B) and magnesium (Mg) under P deficiency, and P, B and sulphur (S) under pathogen attack, but also nickel (Ni) and molybdenum (Mo) under all three stresses. Surprisingly, Si affected some nutrients that were not changed by a particular stress itself and decreased leaf Mg levels under all the stresses. On the other hand, pathogen attack increased leaf accumulation of Si. This exploratory work presents the complexity of nutrient crosstalk under three stresses, and opens more questions about genetic networks that control plant physiological responses. Practically, we show a potential of Si application to improve P status and root health in oak seedlings, particularly in nurseries.

3.
J Hazard Mater ; 457: 131720, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37257379

ABSTRACT

Trivalent chromium [Cr(III)] is a threat to the environment and crop production. Silicon (Si) has been shown to be effective in mitigating Cr(III) toxicity in rice. However, the mechanisms by which Si reduces Cr(III) uptake in rice are unclear. Herein, we hypothesized that the ability of Si to obstruct Cr(III) diffusion via apoplastic bypass is related to silicic acid polymerization, which may be affected by Cr(III) in rice roots. To test this hypothesis, we employed hydroponics experiments on rice (Oryza sativa L.) and utilized apoplastic bypass tracer techniques, as well as model simulations, to investigate 1) the effect of Si on Cr(III) toxicity and its obstruction capacity via apoplastic bypass, 2) the effect of Cr(III) on silicic acid polymerization, and 3) the relationship between the degree of silicic acid polymerization and its Cr(III) obstruction capacity. We found that Si reversed the damage caused by Cr(III) stress in rice. Si exerted an obstruction effect in the apoplast, significantly decreasing the share of Cr(III) uptake via the apoplastic bypass from 18% to 11%. Moreover, Cr(III) reduced silica particles' radii and increased Si concentration in roots. Modeling revealed that a 5-fold reduction in their radii decreased the diffusion of Cr(III) in apoplast by approximately 17%. We revealed that Cr(III) promoted silicic acid polymerization, resulting in the formation of a higher number of Si particles with a smaller radius in roots, which in turn increased the ability of Si to obstruct Cr(III) diffusion. This negative feedback regulatory mechanism is novel and crucially important for maintaining homeostasis in rice, unveiling the unique role of Si under Cr(III) ion stress and providing a theoretical basis for promoting the use of Si fertilizer in the field.


Subject(s)
Oryza , Silicon/pharmacology , Silicic Acid/pharmacology , Chromium/toxicity , Feedback , Plant Roots
4.
Plants (Basel) ; 12(8)2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37111882

ABSTRACT

Monocots and dicots differ in their boron (B) requirement, but also in their capacity to accumulate silicon (Si). Although an ameliorative effect of Si on B toxicity has been reported in various crops, differences among monocots and dicots are not clear, in particular in light of their ability to retain B in the leaf apoplast. In hydroponic experiments under controlled conditions, we studied the role of Si in the compartmentation of B within the leaves of wheat (Triticum vulgare L.) as a model of a high-Si monocot and sunflower (Helianthus annuus L.) as a model of a low-Si dicot, with the focus on the leaf apoplast. The stable isotopes 10B and 11B were used to investigate the dynamics of cell wall B binding capacity. In both crops, the application of Si did not affect B concentration in the root, but significantly decreased the B concentration in the leaves. However, the application of Si differently influenced the binding capacity of the leaf apoplast for excess B in wheat and sunflower. In wheat, whose capacity to retain B in the leaf cell walls is lower than in sunflower, the continuous supply of Si is crucial for an enhancement of high B tolerance in the shoot. On the other hand, the supply of Si did not contribute significantly in the extension of the B binding sites in sunflower leaves.

5.
Sci Total Environ ; 836: 155504, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35490808

ABSTRACT

Zizania latifolia is a wild rice that contains phytoliths (Phyt) that have considerable potential for carbon sequestration. We hypothesized that the capacity of phytolith-occluded carbon (PhytOC) sequestration in residues might increase by 20%, and economic profit would be twice as high under a rice/single-season Z. latifolia rotation as under rice monoculture. To test this hypothesis, we collected rice and Z. latifolia plants and their corresponding soil samples from Zhejiang Province to determine the ability of both crops to fix carbon in the phytoliths. We showed that the soil concentrations of available Si, total carbon (Ctot) and total nitrogen (Ntot) were highly positively correlated with the concentrations of phytoliths and phytolith-occluded carbon in the residues of both crops. The cold waterlogged paddy fields in China have low productivity but their environmental conditions are suitable for planting Z. latifolia. Our model scenario, built on secondary data, demonstrated that, on a national basis, if the cold waterlogged paddy fields (occupying approximately 15% of the total paddy fields) were under rice/single-season Z. latifolia rotation, the contents of phytoliths and PhytOC in rice and Z. latifolia residues would be up to 19.46 × 106 t yr-1 and 8.82 × 104 t yr-1 (0.32 Tg CO2 yr-1), respectively. As a result, the economic benefit would be increased by 1.12 × 1011 USD per year compared to rice monoculture. Therefore, adopting rotational cropping of rice with single-season Z. latifolia will not only increase the content of PhytOC sequestration in residues and improve cold waterlogged paddy fields but also bring economic benefits to farmers.


Subject(s)
Carbon , Oryza , Agriculture , Carbon/analysis , China , Crops, Agricultural , Poaceae , Seasons , Soil/chemistry
6.
Plant Cell Physiol ; 63(3): 340-352, 2022 Mar 11.
Article in English | MEDLINE | ID: mdl-34981810

ABSTRACT

Silicon (Si) can alleviate aluminum (Al) toxicity in rice (Oryza sativa L.), but the mechanisms underlying this beneficial effect have not been elucidated, especially under long-term Al stress. Here, the effects of Al and Si on the suberization and development of rice roots were investigated. The results show that, as the Al exposure time increased, the roots accumulated more Al, and Al enhanced the deposition of suberin in roots, both of which ultimately inhibited root growth and nutrient absorption. However, Si restricted the apoplastic and symplastic pathways of Al in roots by inhibiting the uptake and transport of Al, thereby reducing the accumulation of Al in roots. Meanwhile, the Si-induced drop in Al concentration reduced the suberization of roots caused by Al through down-regulating the expression of genes related to suberin synthesis and then promoted the development of roots (such as longer and more adventitious roots and lateral roots). Moreover, Si also increased nutrient uptake by Al-stressed roots and thence promoted the growth of rice. Overall, these results indicate that Si reduced Al-induced suberization of roots by inhibiting the uptake and transport of Al in roots, thereby amending root growth and ultimately alleviating Al stress in rice. Our study further clarified the toxicity mechanism of Al in rice and the role of Si in reducing Al content and restoring root development under Al stress.


Subject(s)
Oryza , Aluminum/pharmacology , Oryza/metabolism , Plant Roots/metabolism , Silicon/metabolism , Silicon/pharmacology
7.
J Hazard Mater ; 423(Pt B): 127180, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34544001

ABSTRACT

Microbial mechanism of in-situ remediation of arsenic (As) in As-contaminated paddy fields by silicon (Si) fertilization has been rarely reported, especially under continuous rice cultivation and Si applications. In this study, two Si fertilizers were applied for three phases in five consecutive rice seasons to investigate the long-lasting impacts on in-situ remediation of As, and the underpinning microbial mechanism of root-associated compartments (bulk soil, rhizosphere and endosphere) was explored using the last double-cropping rice. Repeated application of Si fertilizers as base manure had a long-lasting effect on reducing As concentrations in rice grains. Application of Si fertilizer at an adequate amount resulted in an extended in-situ remediation effect from endosphere to rhizosphere. The microbial diversity and richness in rhizosphere soil and endosphere were significantly impacted by Si fertilization, the effects depending on application doses and prolonged seasons. Si fertilization can immobilize As in the root or rhizosphere, and Fe concentrations and the As- and Fe-transforming microorganisms (i.e. Geobacteraceae) are the determinants of As uptake in rice. We recommend more extensive supplementation of Si fertilizer at a higher rate to decrease grain As concentration for in-situ remediation. This study sheds light on the microbial-mediated mechanism underlying Si fertilization effect on decreased As uptake in paddy fields.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Arsenic/analysis , Fertilization , Fertilizers/analysis , Seasons , Silicon , Soil , Soil Pollutants/analysis
8.
Plants (Basel) ; 10(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34961285

ABSTRACT

An annual plant, Himalayan balsam (Impatiens glandulifera Royle) is globally widespread and one of Europe's top invaders. We focused on two questions: does this species indeed not invade the southern areas and does the environment affect some of its key invisibility traits. In an isolated model mountainous valley, we jointly analyzed the soil (21 parameters), the life history traits of the invader (height, stem diameter, aboveground dw), and the resident vegetation (species composition and abundances, Ellenberg indicator values), and supplemented it with local knowledge (semi-structured interviews). Uncontrolled discharge of fecal wastewaters directly into the local dense hydrological network fostered mass infestation of an atypical habitat. The phenotypic plasticity of the measured invasion-related traits was very high in the surveyed early invasion (30-50% invader cover) stages. Different microhabitat conditions consistently correlated with its growth performance. The largest individuals were restricted to the deforested riparian habitats, with extreme soil nutrient enrichment (primarily by P and K) and low-competitive, species-poor resident vegetation. We showed that ecological context can modify invasion-related traits and what could affect a further invasion process. Finally, this species is likely underreported in the wider region; public attitude and loss of traditional ecological knowledge are further management risks.

9.
Sci Total Environ ; 553: 141-148, 2016 May 15.
Article in English | MEDLINE | ID: mdl-26925726

ABSTRACT

The deficiency of zinc (Zn) and iron (Fe) is a global issue causing not only considerable yield losses of food crops but also serious health problems. We have analysed Zn and Fe concentrations in the grains of two bread wheat cultivars along native gradient of micronutrient availability throughout Serbia. Although only 13% of the soil samples were Zn deficient and none was Fe deficient, the levels of these micronutrients in grain were rather low (median values of 21 mg kg(-1) for Zn and 36 mg kg(-1) for Fe), and even less adequate in white flour. Moreover, excessive P fertilization of calcareous soils in the major wheat growing areas strongly correlated with lower grain concentration of Zn. Our results imply that a latent Zn deficiency in wheat grain poses a high risk for grain quality relevant to human health in Serbia, where wheat bread is a staple food.


Subject(s)
Environmental Monitoring , Iron/analysis , Trace Elements/analysis , Triticum/chemistry , Zinc/analysis , Seeds/chemistry , Serbia , Soil
10.
Environ Sci Pollut Res Int ; 23(14): 13672-80, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26300359

ABSTRACT

Despite the growing popularity of ecological restoration approach, data on primary succession on toxic post-mining substrates, under site environmental conditions which considerably differ from the surrounding environment, are still scarce. Here, we studied the spontaneous vegetation development on an unusual locality created by long-term and large-scale fluvial deposition of sulphidic tailings from a copper mine in a pronouncedly xerothermic, calcareous surrounding. We performed multivariate analyses of soil samples (20 physical and chemical parameters) and vegetation samples (floristic and structural parameters in three types of occurring forests), collected along the pollution gradients throughout the affected floodplain. The nature can cope with two types of imposed constraints: (a) excessive Cu concentrations and (b) very low pH, combined with nutrient deficiency. The former will still allow convergence to the original vegetation, while the latter will result in novel, depauperate assemblages of species typical for cooler and moister climate. Our results for the first time demonstrate that with the increasing severity of environmental filtering, the relative importance of the surrounding vegetation for primary succession strongly decreases.


Subject(s)
Copper/analysis , Copper/chemistry , Environmental Restoration and Remediation/methods , Rivers/chemistry , Soil Pollutants/analysis , Soil Pollutants/chemistry , Sulfides/chemistry , Copper/isolation & purification , Filtration , Forests , Hydrogen-Ion Concentration , Mining , Plant Development , Soil/chemistry , Soil Pollutants/isolation & purification
11.
PLoS One ; 9(12): e114290, 2014.
Article in English | MEDLINE | ID: mdl-25474688

ABSTRACT

QUESTIONS: Effects of soil on vegetation patterns are commonly obscured by other environmental factors; clear and general relationships are difficult to find. How would community assembly processes be affected by a substantial change in soil characteristics when all other relevant factors are held constant? In particular, can we identify some functional adaptations which would underpin such soil-induced vegetation response? LOCATION: Eastern Serbia: fields partially damaged by long-term and large-scale fluvial deposition of sulphidic waste from a Cu mine; subcontinental/submediterranean climate. METHODS: We analysed the multivariate response of cereal weed assemblages (including biomass and foliar analyses) to a strong man-made soil gradient (from highly calcareous to highly acidic, nutrient-poor soils) over short distances (field scale). RESULTS: The soil gradient favoured a substitution of calcicoles by calcifuges, and an increase in abundance of pseudometallophytes, with preferences for Atlantic climate, broad geographical distribution, hemicryptophytic life form, adapted to low-nutrient and acidic soils, with lower concentrations of Ca, and very narrow range of Cu concentrations in leaves. The trends of abundance of the different ecological groups of indicator species along the soil gradient were systematically reflected in the maintenance of leaf P concentrations, and strong homeostasis in biomass N:P ratio. CONCLUSION: Using annual weed vegetation at the field scale as a fairly simple model, we demonstrated links between gradients in soil properties (pH, nutrient availability) and floristic composition that are normally encountered over large geographic distances. We showed that leaf nutrient status, in particular the maintenance of leaf P concentrations and strong homeostasis of biomass N:P ratio, underpinned a clear functional response of vegetation to mineral stress. These findings can help to understand assembly processes leading to unusual, novel combinations of species which are typically observed as a consequence of strong environmental filtering, as for instance on sites affected by industrial activities.


Subject(s)
Ecosystem , Environmental Monitoring , Soil/chemistry , Acclimatization/physiology , Climate , Humans , Nitrogen/chemistry , Nitrogen/isolation & purification , Phosphorus/chemistry , Phosphorus/isolation & purification , Plant Leaves/chemistry , Serbia , Trees
12.
Sci Total Environ ; 425: 146-54, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22464958

ABSTRACT

Arable alluvial soils are a globally important resource under increasing pressure from both industrial pollution and intensified agricultural land use. Quality of agricultural soils is ultimately defined by crop yields; it is however seldom feasible to study the consequences of complex soil pollution on crops under field conditions. This work analyses the long term effects of two gradients: spatial (relative distance from the water channel) and land use intensity (cropping frequency) on soil properties and model crop (barley) response. On an exceptional model locality in Eastern Serbia, degraded by fluvial deposition of sulphidic copper tailings during 50 years, multivariate analysis shows that land use accelerates the substitution of high plant available Cu by nutrient deficiency (primarily P and microelements) and excessive exchangeable Al. Though agronomic soil quality might not differ along the land use gradient, the environmental consequences do drastically change. The observed apparent "paradoxes" (e.g. soil Cu decreases towards the pollution source; higher yields might coincide with higher soil and leaf Cu concentrations; and leaching of Cu does not restore soils agronomic quality) can be explained by a) the Cu retention patterns along the transects, b) importance of higher SOM and nutrient availability for modifications of Cu toxicity, and c) the existence of plant adaptation mechanisms which can considerably counteract the adverse soil conditions. Land use-induced nutrient deficiency can counteract the positive effects of decreased Cu levels. In a long run, accelerated Cu mobilisation is likely to increase vulnerability of these soils to further environmental hazards. This study demonstrates the clear and consistent patterns in soil properties and plant response along the gradients and points out the probable long-term environmental trends in a "would be" scenario for agricultural use of similar polluted soils.

13.
Environ Manage ; 42(1): 19-36, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18392888

ABSTRACT

The term "barren hills" has been a keyword for land degradation in the uplands of Vietnam for over a decade. Nevertheless, the "barren" land is still not adequately ecologically characterized. In this work, we analyze land use-induced changes in vegetation and soil properties along a sequence of barren hills types formed on one physiotope. The study is undertaken in the Bac Kan province, one of the poorest upland regions where livestock plays an important role. A transition from an old-growth laurel forest to a sparse manmade grassland is characterized by a total of 177 species, rapid species turnover, and discrete dominants, and an overwhelming effect of disturbance history on both soil and vegetation patterning. Land degradation is most apparent in land use-induced maintenance of arrested successions, and the regeneration course is shifted towards drier formations. We hypothesize a conceptual model as an aid to understanding the process of early fallow differentiation in response to the patterned, fine-scale disturbances. The larger-scale implications of the observed trends in regeneration potentials deviation, and, in particular, the effect of water buffaloes in halting fallow successions, are discussed.


Subject(s)
Conservation of Natural Resources , Plants/classification , Species Specificity , Trees , Vietnam
14.
Plant Physiol ; 143(1): 495-503, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17098850

ABSTRACT

A basic problem in silicon (Si) uptake studies in biology is the lack of an appropriate radioactive isotope. Radioactive germanium-68 ((68)Ge) has been used previously as a Si tracer in biological materials, but its suitability for the study of Si transport in higher plants is still untested. In this study, we investigated (68)Ge-traced Si uptake by four crop species differing widely in uptake capacity for Si, including rice (Oryza sativa), barley (Hordeum vulgare), cucumber (Cucumis sativus), and tomato (Lycopersicon esculentum). Maintenance of a (68)Ge:Si molar ratio that was similar in the plant tissues of all four plant species to that supplied in the nutrient solution over a wide range of Si concentrations demonstrated the absence of discrimination between (68)Ge and Si. Further, using the (68)Ge tracer, a typical Michaelis-Menten uptake kinetics for Si was found in rice, barley, and cucumber. Compared to rice, the relative proportion of root-to-shoot translocated Si was lower in barley and cucumber and especially in tomato (only 30%). Uptake and translocation of Si in rice, barley, and cucumber (Si accumulators) were strongly inhibited by 2,4-dinitrophenol and HgCl(2), but in tomato, as a Si-excluding species, both inhibitors produced the opposite effect. In conclusion, our results suggest the use of the (68)Ge tracer method as an appropriate choice for future studies of Si transport in plants. Our findings also indicate that the restriction of Si from symplast to apoplast in the cortex of Si excluders is a metabolically active process.


Subject(s)
Botany/methods , Crops, Agricultural/metabolism , Germanium/analysis , Radioisotopes/analysis , Silicon/metabolism , Biological Transport , Cucumis sativus/metabolism , Hordeum/metabolism , Kinetics , Solanum lycopersicum/metabolism , Oryza/metabolism , Radioactive Tracers
SELECTION OF CITATIONS
SEARCH DETAIL
...