Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Compr Psychoneuroendocrinol ; 11: 100147, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35967925

ABSTRACT

Exposure to stress during critical periods of development-such as puberty-is associated with long-term disruptions in brain function and neuro-immune responsivity. However, the mechanisms underlying the effect of stress on the pubertal neuro-immune response has yet to be elucidated. Therefore, the objective of the current study was to investigate the effect antimicrobial and lipopolysaccharide (LPS) treatments on acute immune responsivity in pubertal male and female mice. Moreover, the potential for probiotic supplementation to mitigate these effects was also examined. 240 male and female CD1 mice were treated with one week of antimicrobial treatment (mixed antimicrobials or water) and probiotic treatment (L. rhamnosis R0011 and L. helveticus R0052 or L. helveticus R0052 and B. longum R0175) or placebo at five weeks of age. At six weeks of age (pubertal stress-sensitive period), the mice received a single injection of LPS or saline. Sickness behaviours were assessed, and mice were euthanized 8 h post-injection. Brain, blood, and intestinal samples were collected. The results indicated that the antimicrobial treatment reduced sickness behaviours, and potentiated LPS-induced plasma cytokine concentrations and pro-inflammatory markers in the pre-frontal cortex (PFC) and hippocampus, in a sex-dependent manner. However, probiotics reduced LPS-induced plasma cytokine concentrations along with hippocampal and PFC pro-inflammatory markers in a sex-dependent manner. L. rhamnosis R0011 and L. helveticus R0052 treatment also mitigated antimicrobial-induced plasma cytokine concentrations and sickness behaviours. These findings suggest that the microbiome is an important modulator of the pro-inflammatory immune response during puberty.

2.
JCI Insight ; 7(12)2022 06 22.
Article in English | MEDLINE | ID: mdl-35730569

ABSTRACT

Infantile spasms syndrome (IS) is a devastating early-onset epileptic encephalopathy associated with poor neurodevelopmental outcomes. When first-line treatment options, including adrenocorticotropic hormone and vigabatrin, are ineffective, the ketogenic diet (KD) is often employed to control seizures. Since the therapeutic impact of the KD is influenced by the gut microbiota, we examined whether targeted microbiota manipulation, mimicking changes induced by the KD, would be valuable in mitigating seizures. Employing a rodent model of symptomatic IS, we show that both the KD and antibiotic administration reduce spasm frequency and are associated with improved developmental outcomes. Spasm reductions were accompanied by specific gut microbial alterations, including increases in Streptococcus thermophilus and Lactococcus lactis. Mimicking the fecal microbial alterations in a targeted probiotic, we administered these species in a 5:1 ratio. Targeted probiotic administration reduced seizures and improved locomotor activities in control diet-fed animals, similar to KD-fed animals, while a negative control (Ligilactobacillus salivarius) had no impact. Probiotic administration also increased antioxidant status and decreased proinflammatory cytokines. Results suggest that a targeted probiotic reduces seizure frequency, improves locomotor activity in a rodent model of IS, and provides insights into microbiota manipulation as a potential therapeutic avenue for pediatric epileptic encephalopathies.


Subject(s)
Gastrointestinal Microbiome , Spasms, Infantile , Animals , Anticonvulsants/therapeutic use , Humans , Seizures/drug therapy , Spasm/drug therapy , Spasms, Infantile/drug therapy , Syndrome
3.
Microorganisms ; 10(2)2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35208773

ABSTRACT

2'-fucosyllactose (2'FL) is one of the most abundant oligosaccharides in human milk, with benefits on neonatal health. Previous results point to the inability of the fecal microbiota from some infants to ferment 2'FL. We evaluated a probiotic formulation, including the strains Lactobacillus helveticus Rosell®-52 (R0052), Bifidobacterium longum subsp. infantis Rosell®-33 (R0033), and Bifidobacterium bifidum Rosell®-71 (R0071), individually or in an 80:10:10 combination on the microbiota and 2'FL degradation. Independent batch fermentations were performed with feces from six full-term infant donors of two months of age (three breastfed and three formula-fed) with added probiotic formulation or the constituent strains in the presence of 2'FL. Microbiota composition was analyzed by 16S rRNA gene sequencing. Gas accumulation, pH decrease and 2'FL consumption, and levels of different metabolites were determined by chromatography. B. bifidum R0071 was the sole microorganism promoting a partial increase of 2'FL degradation during fermentation in fecal cultures of 2'FL slow-degrading donors. However, major changes in microbiota composition and metabolic activity occurred with L. helveticus R0052 or the probiotic formulation in cultures of slow degraders. Further studies are needed to decipher the role of the host intestinal microbiota in the efficacy of these strains.

4.
EBioMedicine ; 76: 103838, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35148983

ABSTRACT

BACKGROUND: Infantile spasms syndrome (IS) is a type of epilepsy affecting 1.6 to 4.5 per 10,000 children in the first year of life, often with severe lifelong neurodevelopmental consequences. Only two first-line pharmacological treatments currently exist for IS and many children are refractory to these therapies. In such cases, children are treated with the ketogenic diet (KD). While effective in reducing seizures, the diet can result in dyslipidemia over time. METHODS: Employing a neonatal Sprague-Dawley rat model of IS, we investigated how the KD affects hepatic steatosis and its modulation by a defined probiotic blend. A combination of multiple readouts, including malondialdehyde, fatty acid profiles, lipid metabolism-related enzyme mRNA expression, mitochondrial function, histone deacetylase activity, cytokines and chemokines were evaluated using liver homogenates. FINDINGS: The KD reduced seizures, but resulted in severe hepatic steatosis, characterized by a white liver, triglyceride accumulation, elevated malondialdehyde, polyunsaturated fatty acids and lower acyl-carnitines compared to animals fed a control diet. The KD-induced metabolic phenotype was prevented by the co-administration of a blend of Streptococcus thermophilus HA-110 and Lactococcus lactis subsp. lactis HA-136. This probiotic blend protected the liver by elevating pAMPK-mediated signaling and promoting lipid oxidation. The strains further upregulated the expression of caspase 1 and interleukin 18, which may contribute to their hepatoprotective effect in this model. INTERPRETATION: Our results suggest that early intervention with probiotics could be considered as an approach to reduce the risk of hepatic side effects of the KD in children who are on the diet for medically indicated reasons. FUNDING: This study was funded by the Alberta Children's Hospital Research Institute and Mitacs Accelerate Program (IT16942).


Subject(s)
Diet, Ketogenic , Epilepsy , Probiotics , AMP-Activated Protein Kinases/metabolism , Animals , Diet, Ketogenic/adverse effects , Epilepsy/metabolism , Humans , Liver/metabolism , Rats , Rats, Sprague-Dawley
5.
Microorganisms ; 9(7)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34361914

ABSTRACT

Although breast milk is considered the gold standard of nutrition for infant feeding, some circumstances may make breastfeeding difficult. Several commercial milk preparations include synthetic human milk oligosaccharides (HMOs) in their composition. However, the effect of HMOs on the establishment of the intestinal microbiota remains incompletely understood. Independent batch fermentations were performed with feces from six full-term infant donors of two months of age (three breastfed and three formula-fed, exclusively) in the presence of 2'fucosyllactose (2'FL), one of the most abundant HMOs in human milk. Microbiota composition was analyzed by 16S rRNA gene sequencing at baseline and at 24 h of incubation. The 2'FL consumption, gas accumulation, and levels of different metabolites were determined by chromatography. Microbiota profiles at baseline were clearly influenced by the mode of feeding and by the intrinsic ability of microbiotas to degrade 2'FL. The 2'FL degradation rate clustered fecal cultures into slow and fast degraders, regardless of feeding type, this being a determinant factor influencing the evolution of the microbiota during incubation, although the low number of donors precludes drawing sound conclusions. More studies are needed to decipher the extent to which the early intervention with HMOs could influence the microbiota as a function of its ability to utilize 2'FL.

6.
Microbiol Resour Announc ; 10(4)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33509983

ABSTRACT

Phascolarctobacterium faecium is a strict anaerobe belonging to the Firmicutes phylum that is found abundantly in the human gastrointestinal tract. Here, we report the complete genome sequence of P. faecium G 104, a strain isolated from a fresh stool sample from a healthy lean donor.

7.
Circ Cardiovasc Genet ; 7(3): 374-382, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24951664

ABSTRACT

BACKGROUND: Common variation at the 11p11.2 locus, encompassing MADD, ACP2, NR1H3, MYBPC3, and SPI1, has been associated in genome-wide association studies with fasting glucose and insulin (FI). In the Cohorts for Heart and Aging Research in Genomic Epidemiology Targeted Sequencing Study, we sequenced 5 gene regions at 11p11.2 to identify rare, potentially functional variants influencing fasting glucose or FI levels. METHODS AND RESULTS: Sequencing (mean depth, 38×) across 16.1 kb in 3566 individuals without diabetes mellitus identified 653 variants, 79.9% of which were rare (minor allele frequency <1%) and novel. We analyzed rare variants in 5 gene regions with FI or fasting glucose using the sequence kernel association test. At NR1H3, 53 rare variants were jointly associated with FI (P=2.73×10(-3)); of these, 7 were predicted to have regulatory function and showed association with FI (P=1.28×10(-3)). Conditioning on 2 previously associated variants at MADD (rs7944584, rs10838687) did not attenuate this association, suggesting that there are >2 independent signals at 11p11.2. One predicted regulatory variant, chr11:47227430 (hg18; minor allele frequency=0.00068), contributed 20.6% to the overall sequence kernel association test score at NR1H3, lies in intron 2 of NR1H3, and is a predicted binding site for forkhead box A1 (FOXA1), a transcription factor associated with insulin regulation. In human HepG2 hepatoma cells, the rare chr11:47227430 A allele disrupted FOXA1 binding and reduced FOXA1-dependent transcriptional activity. CONCLUSIONS: Sequencing at 11p11.2-NR1H3 identified rare variation associated with FI. One variant, chr11:47227430, seems to be functional, with the rare A allele reducing transcription factor FOXA1 binding and FOXA1-dependent transcriptional activity.


Subject(s)
Aging/genetics , Blood Glucose/metabolism , Chromosomes, Human, Pair 11/genetics , Death Domain Receptor Signaling Adaptor Proteins/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/genetics , Genetic Variation , Guanine Nucleotide Exchange Factors/genetics , Heart Diseases/genetics , Insulin/blood , Aged , Aged, 80 and over , Cohort Studies , Fasting/blood , Female , Gene Frequency , Genome-Wide Association Study , Genomics , Heart Diseases/epidemiology , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...