Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Breed Genet ; 141(3): 304-316, 2024 May.
Article in English | MEDLINE | ID: mdl-38108572

ABSTRACT

The Katahdin hair breed gained popularity in the United States as low input and prolific, with a propensity to exhibit parasite resistance. With the introduction of genomically enhanced estimated breeding values (GEBV) to the Katahdin genetic evaluation, defining the diversity present in the breed is pertinent. Utilizing pedigree records (n = 92,030) from 1984 to 2019 from the National Sheep Improvement Program, our objectives were to (i) estimate the completeness and quality of the pedigree, (ii) calculate diversity statistics for the whole pedigree and relevant reference subpopulations and (iii) assess the impact of current diversity on genomic selection. Reference 1 was Katahdins born from 2017 to 2019 (n = 23,494), while reference 2 was a subset with at least three generations of Katahdin ancestry (n = 9327). The completeness of the whole pedigree, and the pedigrees of reference 1 and reference 2, were above 50% through the fourth, fifth and seventh generation of ancestors, respectively. Effective population size (Ne) averaged 111 animals with a range from 42.2 to 451.0. The average generation interval was 2.9 years for the whole pedigree and reference 1, and 2.8 years for reference 2. The mean individual inbreeding and average relatedness coefficients were 1.62% and 0.91%, 1.74% and 0.90% and 2.94% and 1.46% for the whole pedigree, reference 1, and reference 2, respectively. There were over 300 effective founders in the whole pedigree and reference 1, with 169 in reference 2. Effective number of ancestors were over 150 for the whole pedigree and reference 1, while there were 67 for reference 2. Prediction accuracies increased as the reference population grew from 1k to 7.5k and plateaued at 15k animals. Given the large number of founders and ancestors contributing to the base genetic variation in the breed, the Ne is sufficient to maintain diversity while achieving progress with selection. Stable low rates of inbreeding and relatedness suggest that incorporating genetic conservation in breeding decisions is currently not of high priority. Current Ne suggests that with limited genotyping, high levels of accuracy for genomic prediction can be achieved. However, intense selection on GEBV may cause loss of genetic diversity long term.


Subject(s)
Genetic Variation , Inbreeding , Sheep/genetics , Animals , Pedigree , Population Density , Selection, Genetic
2.
Heredity (Edinb) ; 129(6): 346-355, 2022 12.
Article in English | MEDLINE | ID: mdl-36319737

ABSTRACT

Cat domestication likely initiated as a symbiotic relationship between wildcats (Felis silvestris subspecies) and the peoples of developing agrarian societies in the Fertile Crescent. As humans transitioned from hunter-gatherers to farmers ~12,000 years ago, bold wildcats likely capitalized on increased prey density (i.e., rodents). Humans benefited from the cats' predation on these vermin. To refine the site(s) of cat domestication, over 1000 random-bred cats of primarily Eurasian descent were genotyped for single-nucleotide variants and short tandem repeats. The overall cat population structure suggested a single worldwide population with significant isolation by the distance of peripheral subpopulations. The cat population heterozygosity decreased as genetic distance from the proposed cat progenitor's (F.s. lybica) natural habitat increased. Domestic cat origins are focused in the eastern Mediterranean Basin, spreading to nearby islands, and southernly via the Levantine coast into the Nile Valley. Cat population diversity supports the migration patterns of humans and other symbiotic species.


Subject(s)
Domestication , Microsatellite Repeats , Animals , Cats/genetics , Genotype , Middle East
3.
BMC Genomics ; 23(1): 517, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842584

ABSTRACT

BACKGROUND: Genotypic information produced from single nucleotide polymorphism (SNP) arrays has routinely been used to identify genomic regions associated with complex traits in beef and dairy cattle. Herein, we assembled a dataset consisting of 15,815 Red Angus beef cattle distributed across the continental U.S. and a union set of 836,118 imputed SNPs to conduct genome-wide association analyses (GWAA) for growth traits using univariate linear mixed models (LMM); including birth weight, weaning weight, and yearling weight. Genomic relationship matrix heritability estimates were produced for all growth traits, and genotype-by-environment (GxE) interactions were investigated. RESULTS: Moderate to high heritabilities with small standard errors were estimated for birth weight (0.51 ± 0.01), weaning weight (0.25 ± 0.01), and yearling weight (0.42 ± 0.01). GWAA revealed 12 pleiotropic QTL (BTA6, BTA14, BTA20) influencing Red Angus birth weight, weaning weight, and yearling weight which met a nominal significance threshold (P ≤ 1e-05) for polygenic traits using 836K imputed SNPs. Moreover, positional candidate genes associated with Red Angus growth traits in this study (i.e., LCORL, LOC782905, NCAPG, HERC6, FAM184B, SLIT2, MMRN1, KCNIP4, CCSER1, GRID2, ARRDC3, PLAG1, IMPAD1, NSMAF, PENK, LOC112449660, MOS, SH3PXD2B, STC2, CPEB4) were also previously associated with feed efficiency, growth, and carcass traits in beef cattle. Collectively, 14 significant GxE interactions were also detected, but were less consistent among the investigated traits at a nominal significance threshold (P ≤ 1e-05); with one pleiotropic GxE interaction detected on BTA28 (24 Mb) for Red Angus weaning weight and yearling weight. CONCLUSIONS: Sixteen well-supported QTL regions detected from the GWAA and GxE GWAA for growth traits (birth weight, weaning weight, yearling weight) in U.S. Red Angus cattle were found to be pleiotropic. Twelve of these pleiotropic QTL were also identified in previous studies focusing on feed efficiency and growth traits in multiple beef breeds and/or their composites. In agreement with other beef cattle GxE studies our results implicate the role of vasodilation, metabolism, and the nervous system in the genetic sensitivity to environmental stress.


Subject(s)
Gene-Environment Interaction , Genome-Wide Association Study , Animals , Birth Weight/genetics , Cattle/genetics , Genome , Genome-Wide Association Study/veterinary , Genotype , Phenotype , Polymorphism, Single Nucleotide
4.
Virus Res ; 278: 197862, 2020 03.
Article in English | MEDLINE | ID: mdl-31926963

ABSTRACT

Bovine viral diarrhea virus (BVDV) has a profound economic impact on the cattle industry. Calves infected in utero and born persistently infected (PI) with BVDV have increased morbidity, mortality, and reduced productivity. Further, they serve as a continual source of viral exposure to herd mates and thereby pose a significant risk to animal wellbeing and production efficiency. Understanding the mechanisms through which PI is established and maintained is therefore important in working toward finding means to prevent or mitigate losses due to infection. Early studies of acute infection suggested BVDV infection alters the host's ability to mount a type I interferon (IFN) response, thereby allowing for the establishment of PI. More recently, however, animals experimentally challenged with the virus demonstrated a chronic yet modest upregulation of the IFN pathway. To identify if the IFN or other pathways are altered due to PI by BVDV in a natural infection, the circulating blood transcriptome was analyzed from PI feedlot cattle (N = 10 BVDV1a, 8 BVDV1b, 8 BVDV2), cattle co-mingling with PI cattle but not themselves infected (N = 9), and a group of unrelated, unexposed controls (N=10). Differential expression analyses included contrasts among BVDV subtypes, and all pair-wise comparisons of PI, co-mingled non-PI, and unexposed animals. Analyses in limma-voom revealed no difference in the transcriptome based upon the BVDV genotype with which the animal was infected. However, gene expression did differ (adj P < 0.05 and |logFC|> 1) at 175 loci between the PI and co-housed, non-PI contemporaries and when compared to the unexposed controls, 489 loci were differentially expressed. Pathway analyses predict that alterations in the transcriptome of the PI cattle indicate significant upregulation of innate immune function including IFN signaling. These data support prior work suggesting IFN signaling is not completely suppressed in cattle naturally PI with BVDV.


Subject(s)
Bovine Virus Diarrhea-Mucosal Disease/immunology , Cattle/virology , Interferon Type I/genetics , Signal Transduction , Animals , Bovine Virus Diarrhea-Mucosal Disease/virology , Cattle/immunology , Chronic Disease/veterinary , Diarrhea Viruses, Bovine Viral , Female , Gene Expression , Interferon Type I/metabolism , Male , Transcriptome , Up-Regulation
5.
BMC Genomics ; 20(1): 926, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31801456

ABSTRACT

BACKGROUND: Single nucleotide polymorphism (SNP) arrays have facilitated discovery of genetic markers associated with complex traits in domestic cattle; thereby enabling modern breeding and selection programs. Genome-wide association analyses (GWAA) for growth traits were conducted on 10,837 geographically diverse U.S. Gelbvieh cattle using a union set of 856,527 imputed SNPs. Birth weight (BW), weaning weight (WW), and yearling weight (YW) were analyzed using GEMMA and EMMAX (via imputed genotypes). Genotype-by-environment (GxE) interactions were also investigated. RESULTS: GEMMA and EMMAX produced moderate marker-based heritability estimates that were similar for BW (0.36-0.37, SE = 0.02-0.06), WW (0.27-0.29, SE = 0.01), and YW (0.39-0.41, SE = 0.01-0.02). GWAA using 856K imputed SNPs (GEMMA; EMMAX) revealed common positional candidate genes underlying pleiotropic QTL for Gelbvieh growth traits on BTA6, BTA7, BTA14, and BTA20. The estimated proportion of phenotypic variance explained (PVE) by the lead SNP defining these QTL (EMMAX) was larger and most similar for BW and YW, and smaller for WW. Collectively, GWAAs (GEMMA; EMMAX) produced a highly concordant set of BW, WW, and YW QTL that met a nominal significance level (P ≤ 1e-05), with prioritization of common positional candidate genes; including genes previously associated with stature, feed efficiency, and growth traits (i.e., PLAG1, NCAPG, LCORL, ARRDC3, STC2). Genotype-by-environment QTL were not consistent among traits at the nominal significance threshold (P ≤ 1e-05); although some shared QTL were apparent at less stringent significance thresholds (i.e., P ≤ 2e-05). CONCLUSIONS: Pleiotropic QTL for growth traits were detected on BTA6, BTA7, BTA14, and BTA20 for U.S. Gelbvieh beef cattle. Seven QTL detected for Gelbvieh growth traits were also recently detected for feed efficiency and growth traits in U.S. Angus, SimAngus, and Hereford cattle. Marker-based heritability estimates and the detection of pleiotropic QTL segregating in multiple breeds support the implementation of multiple-breed genomic selection.


Subject(s)
Birth Weight/genetics , Genome-Wide Association Study/veterinary , Oligonucleotide Array Sequence Analysis/veterinary , Quantitative Trait Loci , Animals , Cattle , Gene-Environment Interaction , Polymorphism, Single Nucleotide , Quantitative Trait, Heritable , Species Specificity , Weaning
8.
Sci Rep ; 8(1): 7024, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29728693

ABSTRACT

The development of high throughput SNP genotyping technologies has improved the genetic dissection of simple and complex traits in many species including cats. The properties of feline 62,897 SNPs Illumina Infinium iSelect DNA array are described using a dataset of over 2,000 feline samples, the most extensive to date, representing 41 cat breeds, a random bred population, and four wild felid species. Accuracy and efficiency of the array's genotypes and its utility in performing population-based analyses were evaluated. Average marker distance across the array was 37,741 Kb, and across the dataset, only 1% (625) of the markers exhibited poor genotyping and only 0.35% (221) showed Mendelian errors. Marker polymorphism varied across cat breeds and the average minor allele frequency (MAF) of all markers across domestic cats was 0.21. Population structure analysis confirmed a Western to Eastern structural continuum of cat breeds. Genome-wide linkage disequilibrium ranged from 50-1,500 Kb for domestic cats and 750 Kb for European wildcats (Felis silvestris silvestris). Array use in trait association mapping was investigated under different modes of inheritance, selection and population sizes. The efficient array design and cat genotype dataset continues to advance the understanding of cat breeds and will support monogenic health studies across feline breeds and populations.

SELECTION OF CITATIONS
SEARCH DETAIL
...